Self-Adaptation Based on Big Data Analytics: A Model Problem and Tool
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370634" target="_blank" >RIV/00216208:11320/17:10370634 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SEAMS.2017.20" target="_blank" >http://dx.doi.org/10.1109/SEAMS.2017.20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SEAMS.2017.20" target="_blank" >10.1109/SEAMS.2017.20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-Adaptation Based on Big Data Analytics: A Model Problem and Tool
Popis výsledku v původním jazyce
In this paper, we focus on self-adaptation in large-scale software-intensive distributed systems. The main problem in making such systems self-adaptive is that their adaptation needs to consider the current situation in the whole system. However, developing a complete and accurate model of such systems at design time is very challenging. To address this, we present a novel approach where the system model consists only of the essential input and output parameters. Furthermore, Big Data analytics is used to guide self-adaptation based on a continuous stream of operational data. We provide a concrete model problem and a reference implementation of it that can be used as a case study for evaluating different self-adaptation techniques pertinent to complex large-scale distributed systems. We also provide an extensible tool for endorsing an arbitrary system with self-adaptation based on analysis of operational data coming from the system. To illustrate the tool, we apply it on the model problem.
Název v anglickém jazyce
Self-Adaptation Based on Big Data Analytics: A Model Problem and Tool
Popis výsledku anglicky
In this paper, we focus on self-adaptation in large-scale software-intensive distributed systems. The main problem in making such systems self-adaptive is that their adaptation needs to consider the current situation in the whole system. However, developing a complete and accurate model of such systems at design time is very challenging. To address this, we present a novel approach where the system model consists only of the essential input and output parameters. Furthermore, Big Data analytics is used to guide self-adaptation based on a continuous stream of operational data. We provide a concrete model problem and a reference implementation of it that can be used as a case study for evaluating different self-adaptation techniques pertinent to complex large-scale distributed systems. We also provide an extensible tool for endorsing an arbitrary system with self-adaptation based on analysis of operational data coming from the system. To illustrate the tool, we apply it on the model problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)
ISBN
978-1-5386-1550-8
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
102-108
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ, USA
Místo konání akce
Buenos Aires, Argentina
Datum konání akce
22. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—