Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371028" target="_blank" >RIV/00216208:11320/17:10371028 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition

  • Popis výsledku v původním jazyce

    The paper is concerned with the numerical analysis of an elliptic equation in a polygon with a nonlinear Newton boundary condition, discretized by the finite element or discontinuous Galerkin methods. Using the monotone operator theory, it is possible to prove the existence and uniqueness of the exact weak solution and the approximate solution. The main attention is paid to the study of error estimates. To this end, the regularity of the weak solution is investigated and it is shown that due to the boundary corner points, the solution looses regularity in a vicinity of these points. It comes out that the error estimation depends essentially on the opening angle of the corner points and on the parameter defining the nonlinear behaviour of the Newton boundary condition. Theoretical results are compared with numerical experiments confirming a nonstandard behaviour of error estimates.

  • Název v anglickém jazyce

    Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition

  • Popis výsledku anglicky

    The paper is concerned with the numerical analysis of an elliptic equation in a polygon with a nonlinear Newton boundary condition, discretized by the finite element or discontinuous Galerkin methods. Using the monotone operator theory, it is possible to prove the existence and uniqueness of the exact weak solution and the approximate solution. The main attention is paid to the study of error estimates. To this end, the regularity of the weak solution is investigated and it is shown that due to the boundary corner points, the solution looses regularity in a vicinity of these points. It comes out that the error estimation depends essentially on the opening angle of the corner points and on the parameter defining the nonlinear behaviour of the Newton boundary condition. Theoretical results are compared with numerical experiments confirming a nonstandard behaviour of error estimates.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01747S" target="_blank" >GA17-01747S: Teorie a numerická analýza sdružených problémů dynamiky tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of EQUADIFF 2017 Conference

  • ISBN

    978-80-227-4757-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    10

  • Strana od-do

    127-136

  • Název nakladatele

    Slovak University of Technology, SPECTRUM STU

  • Místo vydání

    Bratislava

  • Místo konání akce

    Bratislava

  • Datum konání akce

    24. 7. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000426796700015