Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403968" target="_blank" >RIV/00216208:11320/19:10403968 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RRxEyb.N0R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RRxEyb.N0R</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imanum/drx070" target="_blank" >10.1093/imanum/drx070</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon

  • Popis výsledku v původním jazyce

    This article is concerned with the analysis of the discontinuous Galerkin method (DGM) for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The growth of the nonlinearity is not compatible with the differential equation, which represents an obstacle in the analysis of the problem. Using monotone operator theory, it is possible to prove the existence and uniqueness of the weak solution and the approximate DG solution. The main emphasis is on the study of error estimates. To this end, the regularity of the weak solution is investigated, and it is shown that due to the singular boundary points, the solution loses regularity in the vicinity of these points. It transpires that the error estimation depends essentially on the opening angle of the corner points and the nonlinearity in the boundary term. It also depends on the parameter defining the nonlinear behaviour of the Newton boundary condition. At the end of this article, some computational experiments are presented.

  • Název v anglickém jazyce

    Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon

  • Popis výsledku anglicky

    This article is concerned with the analysis of the discontinuous Galerkin method (DGM) for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The growth of the nonlinearity is not compatible with the differential equation, which represents an obstacle in the analysis of the problem. Using monotone operator theory, it is possible to prove the existence and uniqueness of the weak solution and the approximate DG solution. The main emphasis is on the study of error estimates. To this end, the regularity of the weak solution is investigated, and it is shown that due to the singular boundary points, the solution loses regularity in the vicinity of these points. It transpires that the error estimation depends essentially on the opening angle of the corner points and the nonlinearity in the boundary term. It also depends on the parameter defining the nonlinear behaviour of the Newton boundary condition. At the end of this article, some computational experiments are presented.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01747S" target="_blank" >GA17-01747S: Teorie a numerická analýza sdružených problémů dynamiky tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IMA Journal of Numerical Analysis

  • ISSN

    0272-4979

  • e-ISSN

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    31

  • Strana od-do

    423-453

  • Kód UT WoS článku

    000491255100015

  • EID výsledku v databázi Scopus

    2-s2.0-85063377689