Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403968" target="_blank" >RIV/00216208:11320/19:10403968 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RRxEyb.N0R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RRxEyb.N0R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/drx070" target="_blank" >10.1093/imanum/drx070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon
Popis výsledku v původním jazyce
This article is concerned with the analysis of the discontinuous Galerkin method (DGM) for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The growth of the nonlinearity is not compatible with the differential equation, which represents an obstacle in the analysis of the problem. Using monotone operator theory, it is possible to prove the existence and uniqueness of the weak solution and the approximate DG solution. The main emphasis is on the study of error estimates. To this end, the regularity of the weak solution is investigated, and it is shown that due to the singular boundary points, the solution loses regularity in the vicinity of these points. It transpires that the error estimation depends essentially on the opening angle of the corner points and the nonlinearity in the boundary term. It also depends on the parameter defining the nonlinear behaviour of the Newton boundary condition. At the end of this article, some computational experiments are presented.
Název v anglickém jazyce
Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon
Popis výsledku anglicky
This article is concerned with the analysis of the discontinuous Galerkin method (DGM) for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The growth of the nonlinearity is not compatible with the differential equation, which represents an obstacle in the analysis of the problem. Using monotone operator theory, it is possible to prove the existence and uniqueness of the weak solution and the approximate DG solution. The main emphasis is on the study of error estimates. To this end, the regularity of the weak solution is investigated, and it is shown that due to the singular boundary points, the solution loses regularity in the vicinity of these points. It transpires that the error estimation depends essentially on the opening angle of the corner points and the nonlinearity in the boundary term. It also depends on the parameter defining the nonlinear behaviour of the Newton boundary condition. At the end of this article, some computational experiments are presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01747S" target="_blank" >GA17-01747S: Teorie a numerická analýza sdružených problémů dynamiky tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
31
Strana od-do
423-453
Kód UT WoS článku
000491255100015
EID výsledku v databázi Scopus
2-s2.0-85063377689