Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Results of the WMT17 Metrics Shared Task

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372140" target="_blank" >RIV/00216208:11320/17:10372140 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.statmt.org/wmt17/pdf/WMT55.pdf" target="_blank" >http://www.statmt.org/wmt17/pdf/WMT55.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Results of the WMT17 Metrics Shared Task

  • Popis výsledku v původním jazyce

    This paper presents the results of the WMT17 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT17 news translation task and Neural MT training task. We collected scores of 14 metrics from 8 research groups. In addition to that, we computed scores of 7 standard metrics (BLEU, SentBLEU, NIST, WER, PER, TER and CDER) as baselines. The collected scores were evaluated in terms of system-level correlation (how well each metric&apos;s scores correlate with WMT17 official manual ranking of systems) and in terms of segment level correlation (how often a metric agrees with humans in judging the quality of a particular sentence). This year, we build upon two types of manual judgements: direct assessment (DA) and HUME manual semantic judgements.

  • Název v anglickém jazyce

    Results of the WMT17 Metrics Shared Task

  • Popis výsledku anglicky

    This paper presents the results of the WMT17 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT17 news translation task and Neural MT training task. We collected scores of 14 metrics from 8 research groups. In addition to that, we computed scores of 7 standard metrics (BLEU, SentBLEU, NIST, WER, PER, TER and CDER) as baselines. The collected scores were evaluated in terms of system-level correlation (how well each metric&apos;s scores correlate with WMT17 official manual ranking of systems) and in terms of segment level correlation (how often a metric agrees with humans in judging the quality of a particular sentence). This year, we build upon two types of manual judgements: direct assessment (DA) and HUME manual semantic judgements.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers

  • ISBN

    978-1-945626-96-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    25

  • Strana od-do

    489-513

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg, PA, USA

  • Místo konání akce

    København, Denmark

  • Datum konání akce

    7. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku