Lanczos algorithm and the complex Gauss quadrature
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10360929" target="_blank" >RIV/00216208:11320/18:10360929 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1553/etna_vol50s1" target="_blank" >https://doi.org/10.1553/etna_vol50s1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1553/etna_vol50s1" target="_blank" >10.1553/etna_vol50s1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lanczos algorithm and the complex Gauss quadrature
Popis výsledku v původním jazyce
Gauss quadrature can be naturally generalized in order to approximate quasi-definite linear functionals, where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and the Lanczos algorithm are analogous to those in the positive definite case. In this survey we review these relationships with giving references to the literature that presents them in several related contexts. In particular, the existence of the n-weight (complex) Gauss quadrature corresponds to successfully performing the first n steps of the Lanczos algorithm for generating biorthogonal bases of the two associated Krylov subspaces. The Jordan decomposition of the (complex) Jacobi matrix can be explicitly expressed in terms of the Gauss quadrature nodes and weights and the associated orthogonal polynomials. Since the output of the Lanczos algorithm can be made real whenever the input is real, the value of the Gauss quadrature is a real number whenever all relevant moments of the quasi-definite linear functional are real.
Název v anglickém jazyce
Lanczos algorithm and the complex Gauss quadrature
Popis výsledku anglicky
Gauss quadrature can be naturally generalized in order to approximate quasi-definite linear functionals, where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and the Lanczos algorithm are analogous to those in the positive definite case. In this survey we review these relationships with giving references to the literature that presents them in several related contexts. In particular, the existence of the n-weight (complex) Gauss quadrature corresponds to successfully performing the first n steps of the Lanczos algorithm for generating biorthogonal bases of the two associated Krylov subspaces. The Jordan decomposition of the (complex) Jacobi matrix can be explicitly expressed in terms of the Gauss quadrature nodes and weights and the associated orthogonal polynomials. Since the output of the Lanczos algorithm can be made real whenever the input is real, the value of the Gauss quadrature is a real number whenever all relevant moments of the quasi-definite linear functional are real.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Transactions on Numerical Analysis
ISSN
1068-9613
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000459296200002
EID výsledku v databázi Scopus
2-s2.0-85058210084