KaraMIR: A project for cover song identification and singing voice analysis using a karaoke songs dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10378483" target="_blank" >RIV/00216208:11320/18:10378483 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/18:10240408
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1793351X18400202" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1793351X18400202</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793351X18400202" target="_blank" >10.1142/S1793351X18400202</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
KaraMIR: A project for cover song identification and singing voice analysis using a karaoke songs dataset
Popis výsledku v původním jazyce
We introduce KaraMIR, a musical project dedicated to karaoke song analysis. Within KaraMIR we define Kara1k, a dataset composed of 1,000 cover songs provided by Recisio Karafun application, and the corresponding 1,000 songs by the original artists. Kara1k is mainly dedicated toward cover song identification and singing voice analysis. For both tasks, Kara1k offers novel approaches, as each cover song is a studio-recorded song with the same arrangement as the original recording, but with different singers and musicians. Essentia, harmony-analyser, Marsyas, Vamp plugins and YAAFE have been used to extract audio features for each track in Kara1k. We provide metadata such as the title, genre, original artist, year, International Standard Recording Code and the ground truths for the singer's gender, backing vocals, duets, and lyrics' language. KaraMIR project focuses on defining new problems and describing features and tools to solve them. We thus provide a comparison of traditional and new features for a cover song identification task using statistical methods, as well as the dynamic time warping method on chroma, MFCC, chords, keys, and chord distance features. A supporting experiment on the singer gender classification task is also proposed. The KaraMIR project website facilitates the continuous research.
Název v anglickém jazyce
KaraMIR: A project for cover song identification and singing voice analysis using a karaoke songs dataset
Popis výsledku anglicky
We introduce KaraMIR, a musical project dedicated to karaoke song analysis. Within KaraMIR we define Kara1k, a dataset composed of 1,000 cover songs provided by Recisio Karafun application, and the corresponding 1,000 songs by the original artists. Kara1k is mainly dedicated toward cover song identification and singing voice analysis. For both tasks, Kara1k offers novel approaches, as each cover song is a studio-recorded song with the same arrangement as the original recording, but with different singers and musicians. Essentia, harmony-analyser, Marsyas, Vamp plugins and YAAFE have been used to extract audio features for each track in Kara1k. We provide metadata such as the title, genre, original artist, year, International Standard Recording Code and the ground truths for the singer's gender, backing vocals, duets, and lyrics' language. KaraMIR project focuses on defining new problems and describing features and tools to solve them. We thus provide a comparison of traditional and new features for a cover song identification task using statistical methods, as well as the dynamic time warping method on chroma, MFCC, chords, keys, and chord distance features. A supporting experiment on the singer gender classification task is also proposed. The KaraMIR project website facilitates the continuous research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Semantic Computing
ISSN
1793-351X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
22
Strana od-do
501-522
Kód UT WoS článku
000453524500003
EID výsledku v databázi Scopus
2-s2.0-85058802251