Kara1k: A Karaoke Dataset for Cover Song Identification and Singing Voice Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10240412" target="_blank" >RIV/61989100:27740/18:10240412 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8241597" target="_blank" >https://ieeexplore.ieee.org/document/8241597</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISM.2017.32" target="_blank" >10.1109/ISM.2017.32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kara1k: A Karaoke Dataset for Cover Song Identification and Singing Voice Analysis
Popis výsledku v původním jazyce
We introduce Kara1k, a new musical dataset composed of 2,000 analyzed songs thanks to a partnership with a karaoke company. The dataset is divided into 1,000 cover songs provided by Recisio Karafun application1, and the corresponding 1,000 songs by the original artists. Kara1k is mainly dedicated toward cover song identification and singing voice analysis. For both tasks, it offers novel approaches, as each cover song is a studio-recorded song with the same arrangement as the original recording, but with different singers and musicians. Essentia, harmony-analyser, Marsyas, Vamp plugins and YAAFE have been used to extract audio features for each track in Kara1k. We provide metadata such as the title, genre, original artist, year, International Standard Recording Code and the ground truths for the singer's gender, backing vocals, duets and lyrics' language. Additionally, we provide the instrumental track and the pure singing voice track for each cover song. We showcase two use-case experiments for Kara1k. In the cover song identification task using the Dynamic Time Warping method, we provide a comparison of traditional and new features: chroma and MFCC features, chords and keys, and chroma and chord distances. We obtain 84-89% identification accuracy for three of the features, which justifies our focus on karaoke songs. In the supporting experiment on singer gender classification, we evaluate the difference in the performance in two conditions - a pure singing voice and the singing voice mixed with the background music. The Kara1k dataset is freely available under the KaraMIR project website2.
Název v anglickém jazyce
Kara1k: A Karaoke Dataset for Cover Song Identification and Singing Voice Analysis
Popis výsledku anglicky
We introduce Kara1k, a new musical dataset composed of 2,000 analyzed songs thanks to a partnership with a karaoke company. The dataset is divided into 1,000 cover songs provided by Recisio Karafun application1, and the corresponding 1,000 songs by the original artists. Kara1k is mainly dedicated toward cover song identification and singing voice analysis. For both tasks, it offers novel approaches, as each cover song is a studio-recorded song with the same arrangement as the original recording, but with different singers and musicians. Essentia, harmony-analyser, Marsyas, Vamp plugins and YAAFE have been used to extract audio features for each track in Kara1k. We provide metadata such as the title, genre, original artist, year, International Standard Recording Code and the ground truths for the singer's gender, backing vocals, duets and lyrics' language. Additionally, we provide the instrumental track and the pure singing voice track for each cover song. We showcase two use-case experiments for Kara1k. In the cover song identification task using the Dynamic Time Warping method, we provide a comparison of traditional and new features: chroma and MFCC features, chords and keys, and chroma and chord distances. We obtain 84-89% identification accuracy for three of the features, which justifies our focus on karaoke songs. In the supporting experiment on singer gender classification, we evaluate the difference in the performance in two conditions - a pure singing voice and the singing voice mixed with the background music. The Kara1k dataset is freely available under the KaraMIR project website2.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2017 IEEE International Symposium on Multimedia, ISM 2017
ISBN
978-1-5386-2936-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
177-184
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Tchaj-čung
Datum konání akce
11. 12. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—