Personalized Recommendations in Police Photo Lineup Assembling Task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10378804" target="_blank" >RIV/00216208:11320/18:10378804 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11210/18:10378804
Výsledek na webu
<a href="http://itat.ics.upjs.sk/uploads/ITAT-2018.pdf" target="_blank" >http://itat.ics.upjs.sk/uploads/ITAT-2018.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Personalized Recommendations in Police Photo Lineup Assembling Task
Popis výsledku v původním jazyce
Abstract. In this paper, we aim to present a novel application domain for recommender systems: police photo lineups. Photo lineups play a significant role in the eyewitness identification prosecution and subsequent conviction of suspects. Unfortunately, there are many cases where lineups have led to the conviction of an innocent persons. One of the key factors contributing to the incorrect identification is unfairly assembled (biased) lineups, i.e. that the suspect differs significantly from all other candidates. Although the process of assembling fair lineup is both highly important and time-consuming, only a handful of tools are available to simplify the task. We describe our work towards using recommender systems for the photo lineup assembling task. Initially, two non-personalized recommending methods were evaluated: one based on the visual descriptors of persons and the other their content-based attributes. Next, some personalized hybrid techniques combining both methods based on the feedback from forensic technicians were evaluated. Some of the personalized techniques significantly improved the results of both non-personalized techniques w.r.t. nDCG and recall@top-k.
Název v anglickém jazyce
Personalized Recommendations in Police Photo Lineup Assembling Task
Popis výsledku anglicky
Abstract. In this paper, we aim to present a novel application domain for recommender systems: police photo lineups. Photo lineups play a significant role in the eyewitness identification prosecution and subsequent conviction of suspects. Unfortunately, there are many cases where lineups have led to the conviction of an innocent persons. One of the key factors contributing to the incorrect identification is unfairly assembled (biased) lineups, i.e. that the suspect differs significantly from all other candidates. Although the process of assembling fair lineup is both highly important and time-consuming, only a handful of tools are available to simplify the task. We describe our work towards using recommender systems for the photo lineup assembling task. Initially, two non-personalized recommending methods were evaluated: one based on the visual descriptors of persons and the other their content-based attributes. Next, some personalized hybrid techniques combining both methods based on the feedback from forensic technicians were evaluated. Some of the personalized techniques significantly improved the results of both non-personalized techniques w.r.t. nDCG and recall@top-k.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2018: Information Technologies – Applications and Theory Proceedings of the 18th conference ITAT 2018 Plejsy, Slovakia, September 21–25, 2018
ISBN
—
ISSN
1613-0073
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
157-160
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Germany
Místo konání akce
Plejsy
Datum konání akce
21. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—