Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards Similarity Models in Police Photo Lineup Assembling Tasks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10378948" target="_blank" >RIV/00216208:11320/18:10378948 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11210/18:10378948

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-02224-2_17" target="_blank" >https://doi.org/10.1007/978-3-030-02224-2_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-02224-2_17" target="_blank" >10.1007/978-3-030-02224-2_17</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards Similarity Models in Police Photo Lineup Assembling Tasks

  • Popis výsledku v původním jazyce

    Photo lineups play a significant role in the eyewitness identification process. Lineups are used to provide evidence in the prosecution and subsequent conviction of suspects. Unfortunately, there are many cases where lineups have led to the incorrect identification and conviction of innocent suspects. One of the key factors affecting the incorrect identification is the lack of lineup fairness, i.e. that the suspect differs significantly from other candidates. Although the process of assembling a fair lineup is both highly important and time-consuming, only a handful of tools are available to simplify the task. In this paper, we follow our previous work in this area and focus on defining and tuning the inter-person similarity metric that will serve as a base for a lineup candidate recommender system. This paper proposes an inter-person similarity metric based on DCNN descriptors of candidates&apos; photos and their content-based features, which is further tuned by the feedback of domain experts. The recommending algorithm further considers the need for uniformity in lineups. The proposed method was evaluated in a realistic user study focused on lineup fairness over solutions proposed by domain experts. Results shown indicate that the precision of the proposed method is similar to the solutions proposed by domain experts and therefore the approach may significantly reduce the amount of manual work needed for assembling photo lineups.

  • Název v anglickém jazyce

    Towards Similarity Models in Police Photo Lineup Assembling Tasks

  • Popis výsledku anglicky

    Photo lineups play a significant role in the eyewitness identification process. Lineups are used to provide evidence in the prosecution and subsequent conviction of suspects. Unfortunately, there are many cases where lineups have led to the incorrect identification and conviction of innocent suspects. One of the key factors affecting the incorrect identification is the lack of lineup fairness, i.e. that the suspect differs significantly from other candidates. Although the process of assembling a fair lineup is both highly important and time-consuming, only a handful of tools are available to simplify the task. In this paper, we follow our previous work in this area and focus on defining and tuning the inter-person similarity metric that will serve as a base for a lineup candidate recommender system. This paper proposes an inter-person similarity metric based on DCNN descriptors of candidates&apos; photos and their content-based features, which is further tuned by the feedback of domain experts. The recommending algorithm further considers the need for uniformity in lineups. The proposed method was evaluated in a realistic user study focused on lineup fairness over solutions proposed by domain experts. Results shown indicate that the precision of the proposed method is similar to the solutions proposed by domain experts and therefore the approach may significantly reduce the amount of manual work needed for assembling photo lineups.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-22224S" target="_blank" >GA17-22224S: Analytika uživatelských preferencí v modelech multimediální explorace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Similarity Search and Applications

  • ISBN

    978-3-030-02224-2

  • ISSN

    1611-3349

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    9

  • Strana od-do

    217-225

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    Springer Nature Switzerland AG

  • Místo konání akce

    Lima

  • Datum konání akce

    7. 10. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku