Peptide-Binding Site Prediction From Protein Structure via points on the Solvent Accessible Surface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10379895" target="_blank" >RIV/00216208:11320/18:10379895 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3233547.3233708" target="_blank" >https://doi.org/10.1145/3233547.3233708</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3233547.3233708" target="_blank" >10.1145/3233547.3233708</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Peptide-Binding Site Prediction From Protein Structure via points on the Solvent Accessible Surface
Popis výsledku v původním jazyce
Protein-peptide binding interactions play an important role in cellular regulation and are functionally important in many diseases. If no prior knowledge of the location of a binding site is available, prediction may be needed as a starting point for further modeling or docking. Existing approaches to prediction either require a sequence of the peptide to be already known or offer an unsatisfactory predictive performance. Here we propose P2Rank-Pept, a new machine learning based method for prediction of peptide-binding sites from protein structure. We show that our method significantly outperforms other evaluated methods, including the most recent structure based prediction method SPRINT-Str published last year (AUC: $0.85 > 0.78$). P2Rank-Pept utilizes local structural and sequence information, including evolutionary conservation, and builds a prediction model based on a Random Forest classifier. The novelty of our approach lies in using points on the solvent accessible surface as a unit of classification (as opposed to the typical approach of focusing on amino acid residues), and in the application of the robust technique of Bayesian optimization to systematically optimize arbitrary parameters of the algorithm. Our results assert that P2Rank software package is a viable framework for developing top-performing binding-site prediction methods for different types of binding partners.
Název v anglickém jazyce
Peptide-Binding Site Prediction From Protein Structure via points on the Solvent Accessible Surface
Popis výsledku anglicky
Protein-peptide binding interactions play an important role in cellular regulation and are functionally important in many diseases. If no prior knowledge of the location of a binding site is available, prediction may be needed as a starting point for further modeling or docking. Existing approaches to prediction either require a sequence of the peptide to be already known or offer an unsatisfactory predictive performance. Here we propose P2Rank-Pept, a new machine learning based method for prediction of peptide-binding sites from protein structure. We show that our method significantly outperforms other evaluated methods, including the most recent structure based prediction method SPRINT-Str published last year (AUC: $0.85 > 0.78$). P2Rank-Pept utilizes local structural and sequence information, including evolutionary conservation, and builds a prediction model based on a Random Forest classifier. The novelty of our approach lies in using points on the solvent accessible surface as a unit of classification (as opposed to the typical approach of focusing on amino acid residues), and in the application of the robust technique of Bayesian optimization to systematically optimize arbitrary parameters of the algorithm. Our results assert that P2Rank software package is a viable framework for developing top-performing binding-site prediction methods for different types of binding partners.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10600 - Biological sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
ISBN
978-1-4503-5794-4
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
645-650
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Washington, DC, USA
Datum konání akce
29. 8. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—