Gradient Dynamics and Entropy Production Maximization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10380724" target="_blank" >RIV/00216208:11320/18:10380724 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1515/jnet-2017-0005" target="_blank" >https://doi.org/10.1515/jnet-2017-0005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jnet-2017-0005" target="_blank" >10.1515/jnet-2017-0005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gradient Dynamics and Entropy Production Maximization
Popis výsledku v původním jazyce
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production-maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
Název v anglickém jazyce
Gradient Dynamics and Entropy Production Maximization
Popis výsledku anglicky
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production-maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-15498Y" target="_blank" >GJ17-15498Y: Víceškálová nerovnovážná termodynamika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Non-Equilibrium Thermodynamics
ISSN
0340-0204
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000419371100001
EID výsledku v databázi Scopus
2-s2.0-85037687359