On the role of geometry in statistical mechanics and thermodynamics. II. Thermodynamic perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453036" target="_blank" >RIV/00216208:11320/22:10453036 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=oPzxZGScXf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=oPzxZGScXf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0099930" target="_blank" >10.1063/5.0099930</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the role of geometry in statistical mechanics and thermodynamics. II. Thermodynamic perspective
Popis výsledku v původním jazyce
The General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) provides the structure of mesoscopic multiscale dynamics that guarantees the emergence of equilibrium states. Similarly, a lift of the GENERIC structure to iterated cotangent bundles, called a rate GENERIC, guarantees the emergence of the vector fields that generate the approach to equilibrium. Moreover, the rate GENERIC structure also extends Onsager's variational principle. The maximum entropy principle in the GENERIC structure becomes the Onsager variational principle in the rate GENERIC structure. In the absence of external forces, the rate entropy is a potential that is closely related to the entropy production. In the presence of external forces when the entropy does not exist, the rate entropy still exists. While the entropy at the conclusion of the GENERIC time evolution gives rise to equilibrium thermodynamics, the rate entropy at the conclusion of the rate GENERIC time evolution gives rise to rate thermodynamics. Both GENERIC and rate GENERIC structures are put into the geometrical framework in the first paper of this series. The rate GENERIC is also shown to be related to Grad's hierarchy analysis of reductions of the Boltzmann equation. Chemical kinetics and kinetic theory provide illustrative examples. We introduce rate GENERIC extensions (and thus also Onsager-variational-principle formulations) of both chemical kinetics and the Boltzmann kinetic theory. Published under an exclusive license by AIP Publishing.
Název v anglickém jazyce
On the role of geometry in statistical mechanics and thermodynamics. II. Thermodynamic perspective
Popis výsledku anglicky
The General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) provides the structure of mesoscopic multiscale dynamics that guarantees the emergence of equilibrium states. Similarly, a lift of the GENERIC structure to iterated cotangent bundles, called a rate GENERIC, guarantees the emergence of the vector fields that generate the approach to equilibrium. Moreover, the rate GENERIC structure also extends Onsager's variational principle. The maximum entropy principle in the GENERIC structure becomes the Onsager variational principle in the rate GENERIC structure. In the absence of external forces, the rate entropy is a potential that is closely related to the entropy production. In the presence of external forces when the entropy does not exist, the rate entropy still exists. While the entropy at the conclusion of the GENERIC time evolution gives rise to equilibrium thermodynamics, the rate entropy at the conclusion of the rate GENERIC time evolution gives rise to rate thermodynamics. Both GENERIC and rate GENERIC structures are put into the geometrical framework in the first paper of this series. The rate GENERIC is also shown to be related to Grad's hierarchy analysis of reductions of the Boltzmann equation. Chemical kinetics and kinetic theory provide illustrative examples. We introduce rate GENERIC extensions (and thus also Onsager-variational-principle formulations) of both chemical kinetics and the Boltzmann kinetic theory. Published under an exclusive license by AIP Publishing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Svazek periodika
63
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
123305
Kód UT WoS článku
000898206300004
EID výsledku v databázi Scopus
2-s2.0-85144364106