Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the complexity of H-coloring for special oriented trees

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383359" target="_blank" >RIV/00216208:11320/18:10383359 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ejc.2017.10.001" target="_blank" >https://doi.org/10.1016/j.ejc.2017.10.001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2017.10.001" target="_blank" >10.1016/j.ejc.2017.10.001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the complexity of H-coloring for special oriented trees

  • Popis výsledku v původním jazyce

    For a fixed digraph H, the H -coloring problem is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi is equivalent to proving that, for any H, the H-coloring problem is in P or NP -complete. We confirm this dichotomy for a certain class of oriented trees, which we call special trees (generalizing earlier results on special triads and polyads). Moreover, we prove that every tractable special oriented tree has bounded width, i.e., the corresponding H-coloring problem is solvable by local consistency checking. Our proof relies on recent algebraic tools, namely characterization of congruence meet-semidistributivity via pointing operations and absorption theory.

  • Název v anglickém jazyce

    On the complexity of H-coloring for special oriented trees

  • Popis výsledku anglicky

    For a fixed digraph H, the H -coloring problem is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi is equivalent to proving that, for any H, the H-coloring problem is in P or NP -complete. We confirm this dichotomy for a certain class of oriented trees, which we call special trees (generalizing earlier results on special triads and polyads). Moreover, we prove that every tractable special oriented tree has bounded width, i.e., the corresponding H-coloring problem is solvable by local consistency checking. Our proof relies on recent algebraic tools, namely characterization of congruence meet-semidistributivity via pointing operations and absorption theory.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Svazek periodika

    2018

  • Číslo periodika v rámci svazku

    69

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    54-75

  • Kód UT WoS článku

    000423886700006

  • EID výsledku v databázi Scopus

    2-s2.0-85042142918