Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The wonderland of reflections

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383370" target="_blank" >RIV/00216208:11320/18:10383370 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11856-017-1621-9" target="_blank" >https://doi.org/10.1007/s11856-017-1621-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-017-1621-9" target="_blank" >10.1007/s11856-017-1621-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The wonderland of reflections

  • Popis výsledku v původním jazyce

    A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to ppinterpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.

  • Název v anglickém jazyce

    The wonderland of reflections

  • Popis výsledku anglicky

    A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to ppinterpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-01832S" target="_blank" >GA13-01832S: Obecná algebra a její souvislost s informatikou</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Svazek periodika

    223

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IL - Stát Izrael

  • Počet stran výsledku

    36

  • Strana od-do

    363-398

  • Kód UT WoS článku

    000427197200011

  • EID výsledku v databázi Scopus

    2-s2.0-85035759181