The wonderland of reflections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383370" target="_blank" >RIV/00216208:11320/18:10383370 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11856-017-1621-9" target="_blank" >https://doi.org/10.1007/s11856-017-1621-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-017-1621-9" target="_blank" >10.1007/s11856-017-1621-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The wonderland of reflections
Popis výsledku v původním jazyce
A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to ppinterpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.
Název v anglickém jazyce
The wonderland of reflections
Popis výsledku anglicky
A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to ppinterpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-01832S" target="_blank" >GA13-01832S: Obecná algebra a její souvislost s informatikou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Svazek periodika
223
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
36
Strana od-do
363-398
Kód UT WoS článku
000427197200011
EID výsledku v databázi Scopus
2-s2.0-85035759181