Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ω-CATEGORICAL STRUCTURES AVOIDING HEIGHT 1 IDENTITIES

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437375" target="_blank" >RIV/00216208:11320/21:10437375 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=veDKeREShb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=veDKeREShb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/8179" target="_blank" >10.1090/tran/8179</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ω-CATEGORICAL STRUCTURES AVOIDING HEIGHT 1 IDENTITIES

  • Popis výsledku v původním jazyce

    The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (infinite) finitely bounded homogeneous structures states that such CSPs are polynomial-time tractable if the model-complete core of the template has a pseudo-Siggers polymorphism, and is NP-complete otherwise. One of the important questions related to the dichotomy conjecture is whether, similarly to the case of finite structures, the condition of having a pseudo-Siggers polymorphism can be replaced by the condition of having polymorphisms satisfying a fixed set of identities of height 1, i.e., identities which do not contain any nesting of functional symbols. We provide a negative answer to this question by constructing for each nontrivial set of height 1 identities a structure within the range of the conjecture whose polymorphisms do not satisfy these identities, but whose CSP is tractable nevertheless. An equivalent formulation of the dichotomy conjecture characterizes tractability of the CSP via the local satisfaction of nontrivial height 1 identities by polymorphisms of the structure. We show that local satisfaction and global satisfaction of nontrivial height 1 identities differ for ω-categorical structures with less than doubly exponential orbit growth, thereby resolving one of the main open problems in the algebraic theory of such structures.

  • Název v anglickém jazyce

    ω-CATEGORICAL STRUCTURES AVOIDING HEIGHT 1 IDENTITIES

  • Popis výsledku anglicky

    The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (infinite) finitely bounded homogeneous structures states that such CSPs are polynomial-time tractable if the model-complete core of the template has a pseudo-Siggers polymorphism, and is NP-complete otherwise. One of the important questions related to the dichotomy conjecture is whether, similarly to the case of finite structures, the condition of having a pseudo-Siggers polymorphism can be replaced by the condition of having polymorphisms satisfying a fixed set of identities of height 1, i.e., identities which do not contain any nesting of functional symbols. We provide a negative answer to this question by constructing for each nontrivial set of height 1 identities a structure within the range of the conjecture whose polymorphisms do not satisfy these identities, but whose CSP is tractable nevertheless. An equivalent formulation of the dichotomy conjecture characterizes tractability of the CSP via the local satisfaction of nontrivial height 1 identities by polymorphisms of the structure. We show that local satisfaction and global satisfaction of nontrivial height 1 identities differ for ω-categorical structures with less than doubly exponential orbit growth, thereby resolving one of the main open problems in the algebraic theory of such structures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions of the American Mathematical Society [online]

  • ISSN

    1088-6850

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    374

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    24

  • Strana od-do

    327-350

  • Kód UT WoS článku

    000604947700010

  • EID výsledku v databázi Scopus

    2-s2.0-85097878129