Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

TOPOLOGY IS IRRELEVANT (IN A DICHOTOMY CONJECTURE FOR INFINITE DOMAIN CONSTRAINT SATISFACTION PROBLEMS)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421064" target="_blank" >RIV/00216208:11320/20:10421064 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qhDISn9fvW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qhDISn9fvW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1216213" target="_blank" >10.1137/18M1216213</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    TOPOLOGY IS IRRELEVANT (IN A DICHOTOMY CONJECTURE FOR INFINITE DOMAIN CONSTRAINT SATISFACTION PROBLEMS)

  • Popis výsledku v původním jazyce

    ( )The tractability conjecture for finite domain constraint satisfaction problems (CSPs) stated that such CSPs are solvable in polynomial time whenever there is no natural reduction, in some precise technical sense, from the 3-SAT problem; otherwise, they are NP-complete. Its recent resolution draws on an algebraic characterization of the conjectured borderline: the CSP of a finite structure permits no natural reduction from 3-SAT if and only if the stabilizer of the polymorphism clone of the core of the structure satisfies some nontrivial system of identities, and such satisfaction is always witnessed by several specific nontrivial systems of identities which do not depend on the structure. The tractability conjecture has been generalized in the above formulation to a certain class of infinite domain CSPs, namely, CSPs of reducts of finitely bounded homogeneous structures. It was subsequently shown that the conjectured borderline between hardness and tractability, i.e., a natural reduction from 3-SAT, can be characterized for this class by a combination of algebraic and topological properties. However, it was not known whether the topological component is essential in this characterization. We provide a negative answer to this question by proving that the borderline is characterized by one specific algebraic identity, namely, the pseudo-Siggers identity alpha s(x, y, x, z, y, z) approximate to beta s(y, x, z, x, z, y). This accomplishes one of the steps of a proposed strategy for reducing the infinite domain CSP dichotomy conjecture to the finite case. Our main theorem is also of independent mathematical interest, characterizing a topological property of any omega-categorical core structure (the existence of a continuous homomorphism of a stabilizer of its polymorphism clone to the projections) in purely algebraic terms (the failure of an identity as above).

  • Název v anglickém jazyce

    TOPOLOGY IS IRRELEVANT (IN A DICHOTOMY CONJECTURE FOR INFINITE DOMAIN CONSTRAINT SATISFACTION PROBLEMS)

  • Popis výsledku anglicky

    ( )The tractability conjecture for finite domain constraint satisfaction problems (CSPs) stated that such CSPs are solvable in polynomial time whenever there is no natural reduction, in some precise technical sense, from the 3-SAT problem; otherwise, they are NP-complete. Its recent resolution draws on an algebraic characterization of the conjectured borderline: the CSP of a finite structure permits no natural reduction from 3-SAT if and only if the stabilizer of the polymorphism clone of the core of the structure satisfies some nontrivial system of identities, and such satisfaction is always witnessed by several specific nontrivial systems of identities which do not depend on the structure. The tractability conjecture has been generalized in the above formulation to a certain class of infinite domain CSPs, namely, CSPs of reducts of finitely bounded homogeneous structures. It was subsequently shown that the conjectured borderline between hardness and tractability, i.e., a natural reduction from 3-SAT, can be characterized for this class by a combination of algebraic and topological properties. However, it was not known whether the topological component is essential in this characterization. We provide a negative answer to this question by proving that the borderline is characterized by one specific algebraic identity, namely, the pseudo-Siggers identity alpha s(x, y, x, z, y, z) approximate to beta s(y, x, z, x, z, y). This accomplishes one of the steps of a proposed strategy for reducing the infinite domain CSP dichotomy conjecture to the finite case. Our main theorem is also of independent mathematical interest, characterizing a topological property of any omega-categorical core structure (the existence of a continuous homomorphism of a stabilizer of its polymorphism clone to the projections) in purely algebraic terms (the failure of an identity as above).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-01832S" target="_blank" >GA13-01832S: Obecná algebra a její souvislost s informatikou</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Svazek periodika

    2020

  • Číslo periodika v rámci svazku

    49

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    365-393

  • Kód UT WoS článku

    000546873800004

  • EID výsledku v databázi Scopus

    2-s2.0-85084414747