2 ℵ No pairwise non-isomorphic maximal-closed subgroups of Sym(N) via the classification of the reducts of the Henson digraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384109" target="_blank" >RIV/00216208:11320/18:10384109 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1017/jsl.2017.74" target="_blank" >https://doi.org/10.1017/jsl.2017.74</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2017.74" target="_blank" >10.1017/jsl.2017.74</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
2 ℵ No pairwise non-isomorphic maximal-closed subgroups of Sym(N) via the classification of the reducts of the Henson digraphs
Popis výsledku v původním jazyce
Given two structures M and N on the same domain, we say that N is a reduct of M if all EMPTY SET -definable relations of N are EMPTY SET -definable in M . In this article the reducts of the Henson digraphs are classified. Henson digraphs are homogeneous countable digraphs that omit some set of finite tournaments. As the Henson digraphs are ℵ 0 -categorical, determining their reducts is equivalent to determining all closed supergroups G< Sym(N) of their automorphism groups. A consequence of the classification is that there are 2 ℵ 0 pairwise non-isomorphic Henson digraphs which have no proper non-trivial reducts. Taking their automorphisms groups gives a positive answer to a question of Macpherson that asked if there are 2 ℵ 0 pairwise non-conjugate maximal-closed subgroups of Sym(N) . By the reconstruction results of Rubin, these groups are also non-isomorphic as abstract groups.
Název v anglickém jazyce
2 ℵ No pairwise non-isomorphic maximal-closed subgroups of Sym(N) via the classification of the reducts of the Henson digraphs
Popis výsledku anglicky
Given two structures M and N on the same domain, we say that N is a reduct of M if all EMPTY SET -definable relations of N are EMPTY SET -definable in M . In this article the reducts of the Henson digraphs are classified. Henson digraphs are homogeneous countable digraphs that omit some set of finite tournaments. As the Henson digraphs are ℵ 0 -categorical, determining their reducts is equivalent to determining all closed supergroups G< Sym(N) of their automorphism groups. A consequence of the classification is that there are 2 ℵ 0 pairwise non-isomorphic Henson digraphs which have no proper non-trivial reducts. Taking their automorphisms groups gives a positive answer to a question of Macpherson that asked if there are 2 ℵ 0 pairwise non-conjugate maximal-closed subgroups of Sym(N) . By the reconstruction results of Rubin, these groups are also non-isomorphic as abstract groups.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
83
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
395-415
Kód UT WoS článku
000440465700001
EID výsledku v databázi Scopus
2-s2.0-85051012055