Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

TLS formulation and core reduction for problems with structured right-hand sides

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384756" target="_blank" >RIV/00216208:11320/18:10384756 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24510/18:00005482

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.laa.2018.06.016" target="_blank" >https://doi.org/10.1016/j.laa.2018.06.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2018.06.016" target="_blank" >10.1016/j.laa.2018.06.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    TLS formulation and core reduction for problems with structured right-hand sides

  • Popis výsledku v původním jazyce

    The total least squares (TLS) represents a popular data fitting approach for solving linear approximation problems Ax approximate to b (i.e., with a vector right-hand side) and AX approximate to B (i.e., with a matrix right-hand side) contaminated by errors. This paper introduces a generalization of TLS formulation to problems with structured right-hand sides. First, we focus on the case, where the right-hand side and consequently also the solution are tensors. We show that whereas the basic solvability result can be obtained directly by matricization of both tensors, generalization of the core problem reduction is more complicated. The core reduction allows to reduce mathematically the problem dimensions by removing all redundant and irrelevant data from the system matrix and the right-hand side. We prove that the core problems within the original tensor problem and its matricized counterpart are in general different. Then, we concentrate on problems with even more structured right-hand sides, where the same model A corresponds to a set of various tensor right-hand sides. Finally, relations between the matrix and tensor core problem are discussed.

  • Název v anglickém jazyce

    TLS formulation and core reduction for problems with structured right-hand sides

  • Popis výsledku anglicky

    The total least squares (TLS) represents a popular data fitting approach for solving linear approximation problems Ax approximate to b (i.e., with a vector right-hand side) and AX approximate to B (i.e., with a matrix right-hand side) contaminated by errors. This paper introduces a generalization of TLS formulation to problems with structured right-hand sides. First, we focus on the case, where the right-hand side and consequently also the solution are tensors. We show that whereas the basic solvability result can be obtained directly by matricization of both tensors, generalization of the core problem reduction is more complicated. The core reduction allows to reduce mathematically the problem dimensions by removing all redundant and irrelevant data from the system matrix and the right-hand side. We prove that the core problems within the original tensor problem and its matricized counterpart are in general different. Then, we concentrate on problems with even more structured right-hand sides, where the same model A corresponds to a set of various tensor right-hand sides. Finally, relations between the matrix and tensor core problem are discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Linear Algebra and Its Applications

  • ISSN

    0024-3795

  • e-ISSN

  • Svazek periodika

    555

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    241-265

  • Kód UT WoS článku

    000442065900015

  • EID výsledku v databázi Scopus

    2-s2.0-85048767492