On TLS formulation and core reduction for data fitting with generalized models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404455" target="_blank" >RIV/00216208:11320/19:10404455 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/19:00006481
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Pkg1OurZFf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Pkg1OurZFf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2019.04.018" target="_blank" >10.1016/j.laa.2019.04.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On TLS formulation and core reduction for data fitting with generalized models
Popis výsledku v původním jazyce
The total least squares (TLS) framework represents a popular data fitting approach for solving matrix approximation problems of the form A(X) a AX approximate to B. A general linear mapping on spaces of matrices A : X -> B can be represented by a fourth-order tensor which is in the AX approximate to B case highly structured. This has a direct impact on solvability of the corresponding TLS problem, which is known to be complicated. Thus this paper focuses on several generalizations of the model A: the bilinear model, the model of higher Kronecker rank, and the fully tensorized model. It is shown how the corresponding generalization of the TLS formulation induces enrichment of the search space for the data corrections. Solvability of the resulting minimization problem is studied. Furthermore, extension of the so-called core reduction to the bilinear model is presented. For the fully tensor model, its relation to a particular single right-hand side TLS problem is derived. Relationships among individual formulations are discussed. (C) 2019 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On TLS formulation and core reduction for data fitting with generalized models
Popis výsledku anglicky
The total least squares (TLS) framework represents a popular data fitting approach for solving matrix approximation problems of the form A(X) a AX approximate to B. A general linear mapping on spaces of matrices A : X -> B can be represented by a fourth-order tensor which is in the AX approximate to B case highly structured. This has a direct impact on solvability of the corresponding TLS problem, which is known to be complicated. Thus this paper focuses on several generalizations of the model A: the bilinear model, the model of higher Kronecker rank, and the fully tensorized model. It is shown how the corresponding generalization of the TLS formulation induces enrichment of the search space for the data corrections. Solvability of the resulting minimization problem is studied. Furthermore, extension of the so-called core reduction to the bilinear model is presented. For the fully tensor model, its relation to a particular single right-hand side TLS problem is derived. Relationships among individual formulations are discussed. (C) 2019 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
577
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000474327200001
EID výsledku v databázi Scopus
2-s2.0-85064701229