Solvability Classes for Core Problems in Matrix Total Least Squares Minimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00504412" target="_blank" >RIV/67985807:_____/19:00504412 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10404453 RIV/46747885:24510/19:00006147
Výsledek na webu
<a href="http://hdl.handle.net/11104/0296053" target="_blank" >http://hdl.handle.net/11104/0296053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2019.0252-18" target="_blank" >10.21136/AM.2019.0252-18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solvability Classes for Core Problems in Matrix Total Least Squares Minimization
Popis výsledku v původním jazyce
Linear matrix approximation problems AX ≈ B are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if B is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of B is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková, Plešinger, and Sima (2016). Full classification of core problems with respect to their solvability is still missing. Here we fill this gap. Then we concentrate on the so-called composed (or reducible) core problems that can be represented by a composition of several smaller core problems. We analyze how the solvability class of the components influences the solvability class of the composed problem. We also show on an example that the TLS solvability class of a core problem may be in some sense improved by its composition with a suitably chosen component. The existence of irreducible problems in various solvability classes is discussed.
Název v anglickém jazyce
Solvability Classes for Core Problems in Matrix Total Least Squares Minimization
Popis výsledku anglicky
Linear matrix approximation problems AX ≈ B are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if B is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of B is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková, Plešinger, and Sima (2016). Full classification of core problems with respect to their solvability is still missing. Here we fill this gap. Then we concentrate on the so-called composed (or reducible) core problems that can be represented by a composition of several smaller core problems. We analyze how the solvability class of the components influences the solvability class of the composed problem. We also show on an example that the TLS solvability class of a core problem may be in some sense improved by its composition with a suitably chosen component. The existence of irreducible problems in various solvability classes is discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
26
Strana od-do
103-128
Kód UT WoS článku
000463984700002
EID výsledku v databázi Scopus
2-s2.0-85064195522