Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cops and Robbers on intersection graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384801" target="_blank" >RIV/00216208:11320/18:10384801 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ejc.2018.04.009" target="_blank" >https://doi.org/10.1016/j.ejc.2018.04.009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2018.04.009" target="_blank" >10.1016/j.ejc.2018.04.009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cops and Robbers on intersection graphs

  • Popis výsledku v původním jazyce

    The cop number of a graph G is the smallest k such that k cops win the game of cops and robber on G. We investigate the maximum cop number of geometric intersection graphs, which are graphs whose vertices are represented by geometric shapes and edges by their intersections. We establish the following dichotomy for previously studied classes of intersection graphs: The intersection graphs of arc-connected sets in the plane (called string graphs) have cop number at most 15, and more generally, the intersection graphs of arc-connected subsets of a surface have cop number at most 10g + 15 in case of orientable surface of genus g, and at most 10g&apos; + 15 in case of non-orientable surface of Euler genus g&apos;. For more restricted classes of intersection graphs, we obtain better bounds: the maximum cop number of interval filament graphs is two, and the maximum cop number of outer-string graphs is between 3 and 4. The intersection graphs of disconnected 2-dimensional sets or of 3-dimensional sets have unbounded cop number even in very restricted settings. For instance, it follows from known results that the cop number is unbounded on intersection graphs of two-element subsets of a line. We further show that it is also unbounded on intersection graphs of 3-dimensional unit balls, of 3-dimensional unit cubes or of 3-dimensional axis-aligned unit segments.

  • Název v anglickém jazyce

    Cops and Robbers on intersection graphs

  • Popis výsledku anglicky

    The cop number of a graph G is the smallest k such that k cops win the game of cops and robber on G. We investigate the maximum cop number of geometric intersection graphs, which are graphs whose vertices are represented by geometric shapes and edges by their intersections. We establish the following dichotomy for previously studied classes of intersection graphs: The intersection graphs of arc-connected sets in the plane (called string graphs) have cop number at most 15, and more generally, the intersection graphs of arc-connected subsets of a surface have cop number at most 10g + 15 in case of orientable surface of genus g, and at most 10g&apos; + 15 in case of non-orientable surface of Euler genus g&apos;. For more restricted classes of intersection graphs, we obtain better bounds: the maximum cop number of interval filament graphs is two, and the maximum cop number of outer-string graphs is between 3 and 4. The intersection graphs of disconnected 2-dimensional sets or of 3-dimensional sets have unbounded cop number even in very restricted settings. For instance, it follows from known results that the cop number is unbounded on intersection graphs of two-element subsets of a line. We further show that it is also unbounded on intersection graphs of 3-dimensional unit balls, of 3-dimensional unit cubes or of 3-dimensional axis-aligned unit segments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    August 2018

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    25

  • Strana od-do

    45-69

  • Kód UT WoS článku

    000437075300004

  • EID výsledku v databázi Scopus

    2-s2.0-85046652151