On a residual-based a posteriori error estimator for the total error
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384843" target="_blank" >RIV/00216208:11320/18:10384843 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/imanum/drx037" target="_blank" >https://doi.org/10.1093/imanum/drx037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/drx037" target="_blank" >10.1093/imanum/drx037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a residual-based a posteriori error estimator for the total error
Popis výsledku v původním jazyce
A posteriori error analysis in numerical partial differential equations aims at providing sufficiently accurate information about the distance of the numerically computed approximation to the true solution. Besides estimating the total error, a posteriori analysis should also provide information about its discretization and (inexact) algebraic computation parts. This issue has been addressed by many authors using different approaches. Historically, probably the first and practically very important approach is based on combination of the classical residual-based bound on the discretization error with the adaptive hierarchy of discretizations and computations that allow to incorporate, using various heuristic arguments, the algebraic error. Motivated by some recent publications, this text uses a complementary approach and examines subtleties of the (generalized) residual-based a posteriori error estimator for the total error that rigorously accounts for the algebraic part of the error. The aim is to show on the standard Poisson model problem example, which is used here as a case study, that a rigorous incorporation of the algebraic error represents an intriguing problem that is not yet completely resolved. That should be of concern in h-adaptivity approaches, where the refinement of the mesh is determined using the residual-based a posteriori error estimator assuming Galerkin orthogonality. The commonly used terminology such as 'guaranteed computable upper bounds' should be in the presence of algebraic error cautiously examined.
Název v anglickém jazyce
On a residual-based a posteriori error estimator for the total error
Popis výsledku anglicky
A posteriori error analysis in numerical partial differential equations aims at providing sufficiently accurate information about the distance of the numerically computed approximation to the true solution. Besides estimating the total error, a posteriori analysis should also provide information about its discretization and (inexact) algebraic computation parts. This issue has been addressed by many authors using different approaches. Historically, probably the first and practically very important approach is based on combination of the classical residual-based bound on the discretization error with the adaptive hierarchy of discretizations and computations that allow to incorporate, using various heuristic arguments, the algebraic error. Motivated by some recent publications, this text uses a complementary approach and examines subtleties of the (generalized) residual-based a posteriori error estimator for the total error that rigorously accounts for the algebraic part of the error. The aim is to show on the standard Poisson model problem example, which is used here as a case study, that a rigorous incorporation of the algebraic error represents an intriguing problem that is not yet completely resolved. That should be of concern in h-adaptivity approaches, where the refinement of the mesh is determined using the residual-based a posteriori error estimator assuming Galerkin orthogonality. The commonly used terminology such as 'guaranteed computable upper bounds' should be in the presence of algebraic error cautiously examined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
1164-1184
Kód UT WoS článku
000450010000003
EID výsledku v databázi Scopus
2-s2.0-85057148101