Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On a residual-based a posteriori error estimator for the total error

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384843" target="_blank" >RIV/00216208:11320/18:10384843 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1093/imanum/drx037" target="_blank" >https://doi.org/10.1093/imanum/drx037</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imanum/drx037" target="_blank" >10.1093/imanum/drx037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On a residual-based a posteriori error estimator for the total error

  • Popis výsledku v původním jazyce

    A posteriori error analysis in numerical partial differential equations aims at providing sufficiently accurate information about the distance of the numerically computed approximation to the true solution. Besides estimating the total error, a posteriori analysis should also provide information about its discretization and (inexact) algebraic computation parts. This issue has been addressed by many authors using different approaches. Historically, probably the first and practically very important approach is based on combination of the classical residual-based bound on the discretization error with the adaptive hierarchy of discretizations and computations that allow to incorporate, using various heuristic arguments, the algebraic error. Motivated by some recent publications, this text uses a complementary approach and examines subtleties of the (generalized) residual-based a posteriori error estimator for the total error that rigorously accounts for the algebraic part of the error. The aim is to show on the standard Poisson model problem example, which is used here as a case study, that a rigorous incorporation of the algebraic error represents an intriguing problem that is not yet completely resolved. That should be of concern in h-adaptivity approaches, where the refinement of the mesh is determined using the residual-based a posteriori error estimator assuming Galerkin orthogonality. The commonly used terminology such as &apos;guaranteed computable upper bounds&apos; should be in the presence of algebraic error cautiously examined.

  • Název v anglickém jazyce

    On a residual-based a posteriori error estimator for the total error

  • Popis výsledku anglicky

    A posteriori error analysis in numerical partial differential equations aims at providing sufficiently accurate information about the distance of the numerically computed approximation to the true solution. Besides estimating the total error, a posteriori analysis should also provide information about its discretization and (inexact) algebraic computation parts. This issue has been addressed by many authors using different approaches. Historically, probably the first and practically very important approach is based on combination of the classical residual-based bound on the discretization error with the adaptive hierarchy of discretizations and computations that allow to incorporate, using various heuristic arguments, the algebraic error. Motivated by some recent publications, this text uses a complementary approach and examines subtleties of the (generalized) residual-based a posteriori error estimator for the total error that rigorously accounts for the algebraic part of the error. The aim is to show on the standard Poisson model problem example, which is used here as a case study, that a rigorous incorporation of the algebraic error represents an intriguing problem that is not yet completely resolved. That should be of concern in h-adaptivity approaches, where the refinement of the mesh is determined using the residual-based a posteriori error estimator assuming Galerkin orthogonality. The commonly used terminology such as &apos;guaranteed computable upper bounds&apos; should be in the presence of algebraic error cautiously examined.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IMA Journal of Numerical Analysis

  • ISSN

    0272-4979

  • e-ISSN

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

    1164-1184

  • Kód UT WoS článku

    000450010000003

  • EID výsledku v databázi Scopus

    2-s2.0-85057148101