A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342835" target="_blank" >RIV/67985807:_____/10:00342835 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24220/10:#0001647
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers
Popis výsledku v původním jazyce
For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-Nédélec discrete vector field whose divergence is given by a proper weighting of the residual vector. Next, claiming that the discretization error and the algebraic one should be in balance, we construct stopping criteria for iterative algebraic solvers.Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e., we show that they also represent a lower bound, up to a generic constant, for the overall energy error. A localversion of this result is also stated. This makes our approach suitable for adaptive mesh refinement which also takes into account the algebraic error.
Název v anglickém jazyce
A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers
Popis výsledku anglicky
For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-Nédélec discrete vector field whose divergence is given by a proper weighting of the residual vector. Next, claiming that the discretization error and the algebraic one should be in balance, we construct stopping criteria for iterative algebraic solvers.Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e., we show that they also represent a lower bound, up to a generic constant, for the overall energy error. A localversion of this result is also stated. This makes our approach suitable for adaptive mesh refinement which also takes into account the algebraic error.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Scientific Computing
ISSN
1064-8275
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
000278576300022
EID výsledku v databázi Scopus
—