Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Algorithms Employing Treewidth for L-bounded Cut Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384868" target="_blank" >RIV/00216208:11320/18:10384868 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://jgaa.info/getPaper?id=462" target="_blank" >http://jgaa.info/getPaper?id=462</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7155/jgaa.00462" target="_blank" >10.7155/jgaa.00462</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Algorithms Employing Treewidth for L-bounded Cut Problems

  • Popis výsledku v původním jazyce

    Given a graph G = (V, E) with two distinguished vertices s, t ELEMENT OF V and an integer parameter L &gt; 0, an L-bounded cut is a subset F of edges (vertices) such that the every path between s and t in GF has length more than L. The task is to find an L-bounded cut of minimum cardinality. Though the problem is very simple to state and has been studied since the beginning of the 70&apos;s, it is not much understood yet. The problem is known to be N P-hard to approximate within a small constant factor even for L GREATER-THAN OR EQUAL TO 4 (for L GREATER-THAN OR EQUAL TO 5 for the vertex-deletion version). On the other hand, the best known approximation algorithm for general graphs has approximation ratio only O(n^{2/3}) in the edge case, and O(sqrt n) in the vertex case, where n denotes the number of vertices. We show that for planar graphs, it is possible to solve both the edge- and the vertex-deletion version of the problem optimally in O((L+2)^{3L} n) time. That is, the problem is fixed-parameter tractable (FPT) with respect to L on planar graphs. Furthermore, we show that the problem remains FPT even for bounded genus graphs, a super class of planar graphs. Our second contribution deals with approximations of the vertex- deletion version of the problem. We describe an algorithm that for a given graph G, its tree decomposition of width τ and vertices s and t computes a τ -approximation of the minimum L-bounded s - t vertex cut; if the decomposition is not given, then the approximation ratio is O(τ sqrt{log τ}). For graphs with treewidth bounded by O(n 1/2-epsilon) for any epsilon &gt; 0, but not by a constant, this is the best approximation in terms of n that we are aware of.

  • Název v anglickém jazyce

    On Algorithms Employing Treewidth for L-bounded Cut Problems

  • Popis výsledku anglicky

    Given a graph G = (V, E) with two distinguished vertices s, t ELEMENT OF V and an integer parameter L &gt; 0, an L-bounded cut is a subset F of edges (vertices) such that the every path between s and t in GF has length more than L. The task is to find an L-bounded cut of minimum cardinality. Though the problem is very simple to state and has been studied since the beginning of the 70&apos;s, it is not much understood yet. The problem is known to be N P-hard to approximate within a small constant factor even for L GREATER-THAN OR EQUAL TO 4 (for L GREATER-THAN OR EQUAL TO 5 for the vertex-deletion version). On the other hand, the best known approximation algorithm for general graphs has approximation ratio only O(n^{2/3}) in the edge case, and O(sqrt n) in the vertex case, where n denotes the number of vertices. We show that for planar graphs, it is possible to solve both the edge- and the vertex-deletion version of the problem optimally in O((L+2)^{3L} n) time. That is, the problem is fixed-parameter tractable (FPT) with respect to L on planar graphs. Furthermore, we show that the problem remains FPT even for bounded genus graphs, a super class of planar graphs. Our second contribution deals with approximations of the vertex- deletion version of the problem. We describe an algorithm that for a given graph G, its tree decomposition of width τ and vertices s and t computes a τ -approximation of the minimum L-bounded s - t vertex cut; if the decomposition is not given, then the approximation ratio is O(τ sqrt{log τ}). For graphs with treewidth bounded by O(n 1/2-epsilon) for any epsilon &gt; 0, but not by a constant, this is the best approximation in terms of n that we are aware of.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-11559S" target="_blank" >GA15-11559S: Rozšířené formulace polytopů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Graph Algorithms and Applications

  • ISSN

    1526-1719

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    177-191

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85044206682