Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Melting in High-Pressure Ice Layers of Large Ocean Worlds-Implications for Volatiles Transport

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384960" target="_blank" >RIV/00216208:11320/18:10384960 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1029/2018GL078889" target="_blank" >https://doi.org/10.1029/2018GL078889</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2018GL078889" target="_blank" >10.1029/2018GL078889</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Melting in High-Pressure Ice Layers of Large Ocean Worlds-Implications for Volatiles Transport

  • Popis výsledku v původním jazyce

    A high-pressure ice layer controls the exchange of heat and material between the silicate core and the ocean of Ganymede and Titan. We have shown (Kalousova et al., 2018, ) that a temperate (partially molten) layer is always present at the ocean interface. Another temperate layer with a few percent of water may be present at the silicates interface for low values of Rayleigh number. We derive scaling laws to predict the critical value under which this temperate layer exists and the amount of generated melt. The presence of liquid water in contact with silicates was probably limited to the early history, providing a pathway for the transfer of salts and volatiles like Ar-40 to the ocean. We also derive scaling laws for the water outflow velocity and for the top temperate layer thickness. These laws can be used to model the global thermal and compositional evolution of large ocean worlds. Plain Language Summary Ocean worlds, where a deep global ocean is present below the icy crust, provide an interesting habitable environment where life may exist. On Enceladus, which is small, and Europa, where the H2O/silicate (water/rock) ratio is small, the global ocean is in direct contact with the silicates. On Titan and Ganymede, where this ratio is large, a layer of high-pressure (HP) ice is present between the ocean and the rocky core. This paper shows that early in their evolution, the lower part of this HP ice layer was temperate (porous ice with water in the pores). Such a temperate layer enables a silicates-ocean exchange of salts and volatiles such as Ar-40 that was measured in Titan&apos;s atmosphere by the Cassini mission. It also provides a potentially habitable environment in Ganymede, the largest moon in the solar system that will be studied by the ESA JUICE mission.

  • Název v anglickém jazyce

    Melting in High-Pressure Ice Layers of Large Ocean Worlds-Implications for Volatiles Transport

  • Popis výsledku anglicky

    A high-pressure ice layer controls the exchange of heat and material between the silicate core and the ocean of Ganymede and Titan. We have shown (Kalousova et al., 2018, ) that a temperate (partially molten) layer is always present at the ocean interface. Another temperate layer with a few percent of water may be present at the silicates interface for low values of Rayleigh number. We derive scaling laws to predict the critical value under which this temperate layer exists and the amount of generated melt. The presence of liquid water in contact with silicates was probably limited to the early history, providing a pathway for the transfer of salts and volatiles like Ar-40 to the ocean. We also derive scaling laws for the water outflow velocity and for the top temperate layer thickness. These laws can be used to model the global thermal and compositional evolution of large ocean worlds. Plain Language Summary Ocean worlds, where a deep global ocean is present below the icy crust, provide an interesting habitable environment where life may exist. On Enceladus, which is small, and Europa, where the H2O/silicate (water/rock) ratio is small, the global ocean is in direct contact with the silicates. On Titan and Ganymede, where this ratio is large, a layer of high-pressure (HP) ice is present between the ocean and the rocky core. This paper shows that early in their evolution, the lower part of this HP ice layer was temperate (porous ice with water in the pores). Such a temperate layer enables a silicates-ocean exchange of salts and volatiles such as Ar-40 that was measured in Titan&apos;s atmosphere by the Cassini mission. It also provides a potentially habitable environment in Ganymede, the largest moon in the solar system that will be studied by the ESA JUICE mission.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Geophysical Research Letters

  • ISSN

    0094-8276

  • e-ISSN

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    16

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    8096-8103

  • Kód UT WoS článku

    000445612500025

  • EID výsledku v databázi Scopus

    2-s2.0-85053137639