Dynamics of Titan's high-pressure ice layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421103" target="_blank" >RIV/00216208:11320/20:10421103 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VorSG.3vIU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VorSG.3vIU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.epsl.2020.116416" target="_blank" >10.1016/j.epsl.2020.116416</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics of Titan's high-pressure ice layer
Popis výsledku v původním jazyce
The presence of Ar-40 in Titan's atmosphere and the replenishment of methane argue for the exchange between the interior and the atmosphere. These observations triggered the present study that aims to determine the conditions under which the high-pressure (HP) ice layer, likely present between the deep ocean and the silicate core, poses a barrier for the exchange of volatiles. We model heat and water transport through this convecting HP ice layer using a two-phase numerical model of solid ice-liquid water mixture. We observe that for a large range of heat fluxes from the silicate core and HP ice layer thicknesses, a few percent of liquid water forms at the interface with the silicates. Liquid water being less dense than the HP ice, it creates additional buoyancy, thus facilitating the transport of volatiles towards the ocean. Our results also show that convection is characterized by the presence of hot and the absence of cold plumes. We derive a scaling law that describes the dependence of a critical heat flux for the onset of melting at the silicates interface on the thickness of the HP ice layer and the ice viscosity. We also study the processes at the interface with the base of the ocean where a few tens of kilometers thick layer of temperate (partially molten) ice is present. We find a scaling law for its thickness that depends mainly on the ice viscosity and the density difference between the ice and water. Water from this partially molten, temperate layer flows into the ocean thus completing the connection with the silicate core. The water flux depends primarily on the amount of heat supplied from the silicates. Future evolution models that will use the scaling laws derived in this study will place bounds on the timing of these exchange processes. Using Cassini data and reasonable values of HP ice viscosity and silicate heat flux, we predict melting at the silicates/HP ice interface at present time. (C) 2020 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Dynamics of Titan's high-pressure ice layer
Popis výsledku anglicky
The presence of Ar-40 in Titan's atmosphere and the replenishment of methane argue for the exchange between the interior and the atmosphere. These observations triggered the present study that aims to determine the conditions under which the high-pressure (HP) ice layer, likely present between the deep ocean and the silicate core, poses a barrier for the exchange of volatiles. We model heat and water transport through this convecting HP ice layer using a two-phase numerical model of solid ice-liquid water mixture. We observe that for a large range of heat fluxes from the silicate core and HP ice layer thicknesses, a few percent of liquid water forms at the interface with the silicates. Liquid water being less dense than the HP ice, it creates additional buoyancy, thus facilitating the transport of volatiles towards the ocean. Our results also show that convection is characterized by the presence of hot and the absence of cold plumes. We derive a scaling law that describes the dependence of a critical heat flux for the onset of melting at the silicates interface on the thickness of the HP ice layer and the ice viscosity. We also study the processes at the interface with the base of the ocean where a few tens of kilometers thick layer of temperate (partially molten) ice is present. We find a scaling law for its thickness that depends mainly on the ice viscosity and the density difference between the ice and water. Water from this partially molten, temperate layer flows into the ocean thus completing the connection with the silicate core. The water flux depends primarily on the amount of heat supplied from the silicates. Future evolution models that will use the scaling laws derived in this study will place bounds on the timing of these exchange processes. Using Cassini data and reasonable values of HP ice viscosity and silicate heat flux, we predict melting at the silicates/HP ice interface at present time. (C) 2020 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-10809S" target="_blank" >GA19-10809S: Termomechanické procesy v ledových měsících z pohledu numerického modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth and Planetary Science Letters
ISSN
0012-821X
e-ISSN
—
Svazek periodika
545
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
116416
Kód UT WoS článku
000549183200014
EID výsledku v databázi Scopus
2-s2.0-85086857887