Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dynamics of Titan's high-pressure ice layer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421103" target="_blank" >RIV/00216208:11320/20:10421103 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VorSG.3vIU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VorSG.3vIU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.epsl.2020.116416" target="_blank" >10.1016/j.epsl.2020.116416</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dynamics of Titan's high-pressure ice layer

  • Popis výsledku v původním jazyce

    The presence of Ar-40 in Titan&apos;s atmosphere and the replenishment of methane argue for the exchange between the interior and the atmosphere. These observations triggered the present study that aims to determine the conditions under which the high-pressure (HP) ice layer, likely present between the deep ocean and the silicate core, poses a barrier for the exchange of volatiles. We model heat and water transport through this convecting HP ice layer using a two-phase numerical model of solid ice-liquid water mixture. We observe that for a large range of heat fluxes from the silicate core and HP ice layer thicknesses, a few percent of liquid water forms at the interface with the silicates. Liquid water being less dense than the HP ice, it creates additional buoyancy, thus facilitating the transport of volatiles towards the ocean. Our results also show that convection is characterized by the presence of hot and the absence of cold plumes. We derive a scaling law that describes the dependence of a critical heat flux for the onset of melting at the silicates interface on the thickness of the HP ice layer and the ice viscosity. We also study the processes at the interface with the base of the ocean where a few tens of kilometers thick layer of temperate (partially molten) ice is present. We find a scaling law for its thickness that depends mainly on the ice viscosity and the density difference between the ice and water. Water from this partially molten, temperate layer flows into the ocean thus completing the connection with the silicate core. The water flux depends primarily on the amount of heat supplied from the silicates. Future evolution models that will use the scaling laws derived in this study will place bounds on the timing of these exchange processes. Using Cassini data and reasonable values of HP ice viscosity and silicate heat flux, we predict melting at the silicates/HP ice interface at present time. (C) 2020 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Dynamics of Titan's high-pressure ice layer

  • Popis výsledku anglicky

    The presence of Ar-40 in Titan&apos;s atmosphere and the replenishment of methane argue for the exchange between the interior and the atmosphere. These observations triggered the present study that aims to determine the conditions under which the high-pressure (HP) ice layer, likely present between the deep ocean and the silicate core, poses a barrier for the exchange of volatiles. We model heat and water transport through this convecting HP ice layer using a two-phase numerical model of solid ice-liquid water mixture. We observe that for a large range of heat fluxes from the silicate core and HP ice layer thicknesses, a few percent of liquid water forms at the interface with the silicates. Liquid water being less dense than the HP ice, it creates additional buoyancy, thus facilitating the transport of volatiles towards the ocean. Our results also show that convection is characterized by the presence of hot and the absence of cold plumes. We derive a scaling law that describes the dependence of a critical heat flux for the onset of melting at the silicates interface on the thickness of the HP ice layer and the ice viscosity. We also study the processes at the interface with the base of the ocean where a few tens of kilometers thick layer of temperate (partially molten) ice is present. We find a scaling law for its thickness that depends mainly on the ice viscosity and the density difference between the ice and water. Water from this partially molten, temperate layer flows into the ocean thus completing the connection with the silicate core. The water flux depends primarily on the amount of heat supplied from the silicates. Future evolution models that will use the scaling laws derived in this study will place bounds on the timing of these exchange processes. Using Cassini data and reasonable values of HP ice viscosity and silicate heat flux, we predict melting at the silicates/HP ice interface at present time. (C) 2020 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-10809S" target="_blank" >GA19-10809S: Termomechanické procesy v ledových měsících z pohledu numerického modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Earth and Planetary Science Letters

  • ISSN

    0012-821X

  • e-ISSN

  • Svazek periodika

    545

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    116416

  • Kód UT WoS článku

    000549183200014

  • EID výsledku v databázi Scopus

    2-s2.0-85086857887