Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scheduling shared continuous resources on many-cores

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385246" target="_blank" >RIV/00216208:11320/18:10385246 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10951-017-0518-0" target="_blank" >https://doi.org/10.1007/s10951-017-0518-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10951-017-0518-0" target="_blank" >10.1007/s10951-017-0518-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scheduling shared continuous resources on many-cores

  • Popis výsledku v původním jazyce

    We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement . The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of , it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature. In this article, we suggest and analyze a slightly simplified model. It focuses on the assignment of shared continuous resources to the processors. The job assignment to processors and the ordering of the jobs have already been fixed. It is shown that, even for unit size jobs, finding an optimal solution is NP-hard if the number of processors is part of the input. Positive results for unit size jobs include a polynomial-time algorithm for any constant number of processors. Since the running time is infeasible for practical purposes, we also provide more efficient algorithm variants: an optimal algorithm for two processors and a -approximation algorithm for m processors.

  • Název v anglickém jazyce

    Scheduling shared continuous resources on many-cores

  • Popis výsledku anglicky

    We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement . The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of , it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature. In this article, we suggest and analyze a slightly simplified model. It focuses on the assignment of shared continuous resources to the processors. The job assignment to processors and the ordering of the jobs have already been fixed. It is shown that, even for unit size jobs, finding an optimal solution is NP-hard if the number of processors is part of the input. Positive results for unit size jobs include a polynomial-time algorithm for any constant number of processors. Since the running time is infeasible for practical purposes, we also provide more efficient algorithm variants: an optimal algorithm for two processors and a -approximation algorithm for m processors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Scheduling

  • ISSN

    1094-6136

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    77-92

  • Kód UT WoS článku

    000425010300006

  • EID výsledku v databázi Scopus

    2-s2.0-85018499646