Scheduling shared continuous resources on many-cores
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385246" target="_blank" >RIV/00216208:11320/18:10385246 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10951-017-0518-0" target="_blank" >https://doi.org/10.1007/s10951-017-0518-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10951-017-0518-0" target="_blank" >10.1007/s10951-017-0518-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scheduling shared continuous resources on many-cores
Popis výsledku v původním jazyce
We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement . The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of , it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature. In this article, we suggest and analyze a slightly simplified model. It focuses on the assignment of shared continuous resources to the processors. The job assignment to processors and the ordering of the jobs have already been fixed. It is shown that, even for unit size jobs, finding an optimal solution is NP-hard if the number of processors is part of the input. Positive results for unit size jobs include a polynomial-time algorithm for any constant number of processors. Since the running time is infeasible for practical purposes, we also provide more efficient algorithm variants: an optimal algorithm for two processors and a -approximation algorithm for m processors.
Název v anglickém jazyce
Scheduling shared continuous resources on many-cores
Popis výsledku anglicky
We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement . The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of , it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature. In this article, we suggest and analyze a slightly simplified model. It focuses on the assignment of shared continuous resources to the processors. The job assignment to processors and the ordering of the jobs have already been fixed. It is shown that, even for unit size jobs, finding an optimal solution is NP-hard if the number of processors is part of the input. Positive results for unit size jobs include a polynomial-time algorithm for any constant number of processors. Since the running time is infeasible for practical purposes, we also provide more efficient algorithm variants: an optimal algorithm for two processors and a -approximation algorithm for m processors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Scheduling
ISSN
1094-6136
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
77-92
Kód UT WoS článku
000425010300006
EID výsledku v databázi Scopus
2-s2.0-85018499646