Structure and generation of crossing-critical graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385421" target="_blank" >RIV/00216208:11320/18:10385421 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/18:00101458
Výsledek na webu
<a href="http://drops.dagstuhl.de/opus/volltexte/2018/8746" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2018/8746</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.33" target="_blank" >10.4230/LIPIcs.SoCG.2018.33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure and generation of crossing-critical graphs
Popis výsledku v původním jazyce
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-crossings when drawn in the plane. For c=1 there are only two such graphs without degree-2 vertices, K_5 and K_{3,3}, but for any fixed c>1 there exist infinitely many c-crossing-critical graphs. It has been previously shown that c-crossing-critical graphs have bounded path-width and contain only a bounded number of internally disjoint paths between any two vertices. We expand on these results, providing a more detailed description of the structure of crossing-critical graphs. On the way towards this description, we prove a new structural characterisation of plane graphs of bounded path-width. Then we show that every c-crossing-critical graph can be obtained from a c-crossing-critical graph of bounded size by replicating bounded-size parts that already appear in narrow "bands" or "fans" in the graph. This also gives an algorithm to generate all the c-crossing-critical graphs of at most given order n in polynomial time per each generated graph.
Název v anglickém jazyce
Structure and generation of crossing-critical graphs
Popis výsledku anglicky
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-crossings when drawn in the plane. For c=1 there are only two such graphs without degree-2 vertices, K_5 and K_{3,3}, but for any fixed c>1 there exist infinitely many c-crossing-critical graphs. It has been previously shown that c-crossing-critical graphs have bounded path-width and contain only a bounded number of internally disjoint paths between any two vertices. We expand on these results, providing a more detailed description of the structure of crossing-critical graphs. On the way towards this description, we prove a new structural characterisation of plane graphs of bounded path-width. Then we show that every c-crossing-critical graph can be obtained from a c-crossing-critical graph of bounded size by replicating bounded-size parts that already appear in narrow "bands" or "fans" in the graph. This also gives an algorithm to generate all the c-crossing-critical graphs of at most given order n in polynomial time per each generated graph.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
34th International Symposium on Computational Geometry (SoCG 2018)
ISBN
978-3-95977-066-8
ISSN
1868-8969
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Budapest, Hungary
Datum konání akce
11. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—