Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stars and Bonds in Crossing-Critical Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00045366" target="_blank" >RIV/00216224:14330/10:00045366 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stars and Bonds in Crossing-Critical Graphs

  • Popis výsledku v původním jazyce

    The structure of all known infinite families of crossing--critical graphs has led to the conjecture that crossing--critical graphs have bounded bandwidth. If true, this would imply that crossing--critical graphs have bounded degree, that is, that they cannot contain subdivisions of $K_{1,n}$ for arbitrarily large $n$. In this paper we prove two results that revolve around this conjecture. On the positive side, we show that crossing--critical graphs cannot contain subdivisions of $K_{2,n}$ for arbitrarily large $n$. On the negative side, we show that there are graphs with arbitrarily large maximum degree that are $2$-crossing--critical in the projective plane.

  • Název v anglickém jazyce

    Stars and Bonds in Crossing-Critical Graphs

  • Popis výsledku anglicky

    The structure of all known infinite families of crossing--critical graphs has led to the conjecture that crossing--critical graphs have bounded bandwidth. If true, this would imply that crossing--critical graphs have bounded degree, that is, that they cannot contain subdivisions of $K_{1,n}$ for arbitrarily large $n$. In this paper we prove two results that revolve around this conjecture. On the positive side, we show that crossing--critical graphs cannot contain subdivisions of $K_{2,n}$ for arbitrarily large $n$. On the negative side, we show that there are graphs with arbitrarily large maximum degree that are $2$-crossing--critical in the projective plane.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Svazek periodika

    65

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus