Efficient approaches for enclosing the united solution set of the interval generalized Sylvester matrix equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385563" target="_blank" >RIV/00216208:11320/18:10385563 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apnum.2017.12.003" target="_blank" >https://doi.org/10.1016/j.apnum.2017.12.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2017.12.003" target="_blank" >10.1016/j.apnum.2017.12.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient approaches for enclosing the united solution set of the interval generalized Sylvester matrix equations
Popis výsledku v původním jazyce
We investigate the interval generalized Sylvester matrix equation AXB + CXD = F. We propose a necessary condition for its solutions, and also a sufficient condition for boundedness of the whole solution set. The main effort is performed to develop techniques for computing outer estimations of the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator, reducing significantly computational complexity, compared to the Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of A, B, C and D and in both of them we suppose that the midpoints of A and C are simultaneously diagonalizable as well as for the midpoints of the matrices B and D. Numerical experiments are given to illustrate the performance of the proposed methods.
Název v anglickém jazyce
Efficient approaches for enclosing the united solution set of the interval generalized Sylvester matrix equations
Popis výsledku anglicky
We investigate the interval generalized Sylvester matrix equation AXB + CXD = F. We propose a necessary condition for its solutions, and also a sufficient condition for boundedness of the whole solution set. The main effort is performed to develop techniques for computing outer estimations of the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator, reducing significantly computational complexity, compared to the Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of A, B, C and D and in both of them we suppose that the midpoints of A and C are simultaneously diagonalizable as well as for the midpoints of the matrices B and D. Numerical experiments are given to illustrate the performance of the proposed methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
18-33
Kód UT WoS článku
000424314800002
EID výsledku v databázi Scopus
2-s2.0-85037812474