On preconditioning and solving an extended class of interval parametric linear systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437014" target="_blank" >RIV/00216208:11320/21:10437014 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=m.cZjjFSOR" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=m.cZjjFSOR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-020-01018-0" target="_blank" >10.1007/s11075-020-01018-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On preconditioning and solving an extended class of interval parametric linear systems
Popis výsledku v původním jazyce
We deal with interval parametric systems of linear equations and the goal is to solve such systems, which basically comes down to finding an enclosure for a parametric solution set. Obviously, we want this enclosure to be tight and cheap to compute; unfortunately, these two objectives are conflicting. The review of the available literature shows that in order to make a system more tractable, most of the solution methods use left preconditioning of the system by the midpoint inverse. Surprisingly, and in contrast to standard interval linear systems, our investigations have shown that double preconditioning can be more efficient than a single one, both in terms of checking the regularity of the system matrix and enclosing the solution set, which is demonstrated by numerical examples. Consequently, right (which was hitherto mentioned in the context of checking regularity of interval parametric matrices) and double preconditioning together with the p-solution concept enable us to solve a larger class of interval parametric linear systems than most existing methods. The applicability of the proposed approach to solving interval parametric linear systems is illustrated by several numerical examples. (C) 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
On preconditioning and solving an extended class of interval parametric linear systems
Popis výsledku anglicky
We deal with interval parametric systems of linear equations and the goal is to solve such systems, which basically comes down to finding an enclosure for a parametric solution set. Obviously, we want this enclosure to be tight and cheap to compute; unfortunately, these two objectives are conflicting. The review of the available literature shows that in order to make a system more tractable, most of the solution methods use left preconditioning of the system by the midpoint inverse. Surprisingly, and in contrast to standard interval linear systems, our investigations have shown that double preconditioning can be more efficient than a single one, both in terms of checking the regularity of the system matrix and enclosing the solution set, which is demonstrated by numerical examples. Consequently, right (which was hitherto mentioned in the context of checking regularity of interval parametric matrices) and double preconditioning together with the p-solution concept enable us to solve a larger class of interval parametric linear systems than most existing methods. The applicability of the proposed approach to solving interval parametric linear systems is illustrated by several numerical examples. (C) 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
87
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
1535-1562
Kód UT WoS článku
000582426300001
EID výsledku v databázi Scopus
2-s2.0-85094115482