The worst case finite optimal value in interval linear programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385569" target="_blank" >RIV/00216208:11320/18:10385569 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17535/crorr.2018.0019" target="_blank" >https://doi.org/10.17535/crorr.2018.0019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17535/crorr.2018.0019" target="_blank" >10.17535/crorr.2018.0019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The worst case finite optimal value in interval linear programming
Popis výsledku v původním jazyce
We consider a linear programming problem, in which possibly all coefficients are subject to uncertainty in the form of deterministic intervals. The problem of computing the worst case optimal value has already been thoroughly investigated in the past. Notice that it might happen that the value can be infinite due to infeasibility of some instances. This is a serious drawback if we know a priori that all instances should be feasible. Therefore we focus on the feasible instances only and study the problem of computing the worst case finite optimal value. We present a characterization for the general case and investigate special cases, too. We show that the problem is easy to solve provided interval uncertainty affects the objective function only, but the problem becomes intractable in case of intervals in the right-hand side of the constraints. We also propose a finite reduction based on inspecting candidate bases. We show that processing a given basis is still an NP-hard problem even with non-interval constraint matrix, however, the problem becomes tractable as long as uncertain coefficients are situated either in the objective function or in the right-hand side only.
Název v anglickém jazyce
The worst case finite optimal value in interval linear programming
Popis výsledku anglicky
We consider a linear programming problem, in which possibly all coefficients are subject to uncertainty in the form of deterministic intervals. The problem of computing the worst case optimal value has already been thoroughly investigated in the past. Notice that it might happen that the value can be infinite due to infeasibility of some instances. This is a serious drawback if we know a priori that all instances should be feasible. Therefore we focus on the feasible instances only and study the problem of computing the worst case finite optimal value. We present a characterization for the general case and investigate special cases, too. We show that the problem is easy to solve provided interval uncertainty affects the objective function only, but the problem becomes intractable in case of intervals in the right-hand side of the constraints. We also propose a finite reduction based on inspecting candidate bases. We show that processing a given basis is still an NP-hard problem even with non-interval constraint matrix, however, the problem becomes tractable as long as uncertain coefficients are situated either in the objective function or in the right-hand side only.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Croatian Operational Research Review [online]
ISSN
1848-9931
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
10
Strana od-do
245-254
Kód UT WoS článku
000453297700009
EID výsledku v databázi Scopus
2-s2.0-85058806012