Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386283" target="_blank" >RIV/00216208:11320/18:10386283 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1021/acs.jpcc.8b06840" target="_blank" >https://doi.org/10.1021/acs.jpcc.8b06840</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.8b06840" target="_blank" >10.1021/acs.jpcc.8b06840</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling

  • Popis výsledku v původním jazyce

    PtCu bimetallic alloys are known to provide better activity than pure platinum in proton exchange membrane fuel cells. However, such catalysts undergo complex degradation processes during fuel cell operation, resulting in deterioration of their activity. By using in situ electrochemical (EC) atomic force microscopy combined with in situ EC infrared reflection absorption spectroscopy, we provide a comprehensive investigation of morphological and structural transformations of PtCu model thin film catalysts during accelerated degradation tests (ADTs). The ADTs consist of potentiodynamic cycling to three different upper potentials relevant for different modes of fuel cell operation. The results show that, depending on the upper potential limit, PtCu alloy electrocatalysts are subject to drastic changes in the surface composition, morphology, and structure.

  • Název v anglickém jazyce

    Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling

  • Popis výsledku anglicky

    PtCu bimetallic alloys are known to provide better activity than pure platinum in proton exchange membrane fuel cells. However, such catalysts undergo complex degradation processes during fuel cell operation, resulting in deterioration of their activity. By using in situ electrochemical (EC) atomic force microscopy combined with in situ EC infrared reflection absorption spectroscopy, we provide a comprehensive investigation of morphological and structural transformations of PtCu model thin film catalysts during accelerated degradation tests (ADTs). The ADTs consist of potentiodynamic cycling to three different upper potentials relevant for different modes of fuel cell operation. The results show that, depending on the upper potential limit, PtCu alloy electrocatalysts are subject to drastic changes in the surface composition, morphology, and structure.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    38

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    21974-21982

  • Kód UT WoS článku

    000446141900030

  • EID výsledku v databázi Scopus

    2-s2.0-85053666610