A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386558" target="_blank" >RIV/00216208:11320/18:10386558 - isvavai.cz</a>
Výsledek na webu
<a href="https://cgg.mff.cuni.cz/~jaroslav/papers/2018-brdfmanifold/2018-herholz-brdfmanifold-paper.pdf" target="_blank" >https://cgg.mff.cuni.cz/~jaroslav/papers/2018-brdfmanifold/2018-herholz-brdfmanifold-paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2312/sre.20181171" target="_blank" >10.2312/sre.20181171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models
Popis výsledku v původním jazyce
VirtuallyallexistinganalyticBRDFmodelsarebuiltfrommultiplefunctionalcomponents(e.g.,Fresnelterm,normaldistribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.
Název v anglickém jazyce
A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models
Popis výsledku anglicky
VirtuallyallexistinganalyticBRDFmodelsarebuiltfrommultiplefunctionalcomponents(e.g.,Fresnelterm,normaldistribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-18964S" target="_blank" >GA16-18964S: Adaptivní vzorkování a metody Markov chain Monte Carlo v simulaci transportu světla</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Eurographics Symposium on Rendering - Experimental Ideas & Implementations
ISBN
978-3-03868-068-0
ISSN
1727-3463
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
The Eurographics Association
Místo vydání
Switzerland
Místo konání akce
Karlsruhe, Germany
Datum konání akce
2. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—