A Tight Lower Bound for Steiner Orientation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386943" target="_blank" >RIV/00216208:11320/18:10386943 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-90530-3_7" target="_blank" >https://doi.org/10.1007/978-3-319-90530-3_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-90530-3_7" target="_blank" >10.1007/978-3-319-90530-3_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Tight Lower Bound for Steiner Orientation
Popis výsledku v původním jazyce
In the Steiner Orientation problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s -> t path for each terminal pair (s, t) is an element of T. Arkin and Hassin [DAM' 02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k = 2. From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA'12, SIDMA'13] designed an XP algorithm running in n(O(k)) time for all k >= 1. Pilipczuk andWahlstrom [SODA'16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS'01] the Steiner Orientation problem does not admit an f(k).n(o(k/log k)) algorithm for any computable function f. That is, the n(O(k)) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the n(O(k)) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the Steiner Orientation problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k).n(O(k)) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the Grid Tiling problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether Steiner Orientation admits the "square-root phenomenon" on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k).n(O(root k)) for Planar Steiner Orientation, or does the lower bound of f(k).n(O(k))) also translate to planar graphs?
Název v anglickém jazyce
A Tight Lower Bound for Steiner Orientation
Popis výsledku anglicky
In the Steiner Orientation problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s -> t path for each terminal pair (s, t) is an element of T. Arkin and Hassin [DAM' 02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k = 2. From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA'12, SIDMA'13] designed an XP algorithm running in n(O(k)) time for all k >= 1. Pilipczuk andWahlstrom [SODA'16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS'01] the Steiner Orientation problem does not admit an f(k).n(o(k/log k)) algorithm for any computable function f. That is, the n(O(k)) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the n(O(k)) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the Steiner Orientation problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k).n(O(k)) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the Grid Tiling problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether Steiner Orientation admits the "square-root phenomenon" on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k).n(O(root k)) for Planar Steiner Orientation, or does the lower bound of f(k).n(O(k))) also translate to planar graphs?
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018
ISBN
978-3-319-90529-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
65-77
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Higher Sch Economics
Datum konání akce
6. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000445826800007