Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parameterized Complexity of Directed Steiner Tree on Sparse Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00313780" target="_blank" >RIV/68407700:21240/17:00313780 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://epubs.siam.org/doi/10.1137/15M103618X" target="_blank" >http://epubs.siam.org/doi/10.1137/15M103618X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/15M103618X" target="_blank" >10.1137/15M103618X</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parameterized Complexity of Directed Steiner Tree on Sparse Graphs

  • Popis výsledku v původním jazyce

    We study the parameterized complexity of the directed variant of the classical STEINER TREE problem on various classes of directed sparse graphs. While the parameterized complexity of STEINER TREE parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of nonterminals in the solution tree. All that is known for this parameterization is that both the directed and the undirected versions are W[2]-hard on general graphs and hence unlikely to be fixed parameter tractable (FPT). The undirected STEINER TREE problem becomes FPT when restricted to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down on directed planar graphs. In this article we precisely chart the tractability border for DIRECTED STEINER TREE (DST) on sparse graphs parameterized by the number of nonterminals in the solution tree. Specifically, we show that the problem is FPT on graphs excluding a topological minor but becomes W[2]-hard on graphs of degeneracy 2. On the other hand we show that if the subgraph induced by the terminals is acyclic, then the problem becomes FPT on graphs of bounded degeneracy. We further show that our algorithm achieves the best possible asymptotic running time dependence on the solution size and degeneracy of the input graph, under standard complexity theoretic assumptions. Using the ideas developed for DST, we also obtain improved algorithms for DOMINATING SET on sparse undirected graphs. These algorithms are asymptotically optimal.

  • Název v anglickém jazyce

    Parameterized Complexity of Directed Steiner Tree on Sparse Graphs

  • Popis výsledku anglicky

    We study the parameterized complexity of the directed variant of the classical STEINER TREE problem on various classes of directed sparse graphs. While the parameterized complexity of STEINER TREE parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of nonterminals in the solution tree. All that is known for this parameterization is that both the directed and the undirected versions are W[2]-hard on general graphs and hence unlikely to be fixed parameter tractable (FPT). The undirected STEINER TREE problem becomes FPT when restricted to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down on directed planar graphs. In this article we precisely chart the tractability border for DIRECTED STEINER TREE (DST) on sparse graphs parameterized by the number of nonterminals in the solution tree. Specifically, we show that the problem is FPT on graphs excluding a topological minor but becomes W[2]-hard on graphs of degeneracy 2. On the other hand we show that if the subgraph induced by the terminals is acyclic, then the problem becomes FPT on graphs of bounded degeneracy. We further show that our algorithm achieves the best possible asymptotic running time dependence on the solution size and degeneracy of the input graph, under standard complexity theoretic assumptions. Using the ideas developed for DST, we also obtain improved algorithms for DOMINATING SET on sparse undirected graphs. These algorithms are asymptotically optimal.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GP14-13017P" target="_blank" >GP14-13017P: Parametrizované algoritmy pro základní síťové problémy spojené se souvislostí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    34

  • Strana od-do

    1294-1327

  • Kód UT WoS článku

    000404770300033

  • EID výsledku v databázi Scopus