Parameterized Complexity of Directed Steiner Tree on Sparse Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00209349" target="_blank" >RIV/68407700:21240/13:00209349 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-40450-4_57" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-40450-4_57</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40450-4_57" target="_blank" >10.1007/978-3-642-40450-4_57</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized Complexity of Directed Steiner Tree on Sparse Graphs
Popis výsledku v původním jazyce
We study the parameterized complexity of the directed variant of the classical Steiner Tree problem on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of non-terminals in the solution tree. All that is known for this parameterization is that both the directed and the undirected versions are W[2]-hard on general graphs, and hence unlikely tobe fixed parameter tractable (FPT). The undirected Steiner Tree problem becomes FPT when restricted to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down on directed planar graphs. In this article we precisely chart the tractability border for Directed Steiner Tree (DST) on sparse graphs parameterized by the number of non-terminals in the solution tree. Specifically, we show that the problem is fixed parameter tractable on graphs exclu
Název v anglickém jazyce
Parameterized Complexity of Directed Steiner Tree on Sparse Graphs
Popis výsledku anglicky
We study the parameterized complexity of the directed variant of the classical Steiner Tree problem on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of non-terminals in the solution tree. All that is known for this parameterization is that both the directed and the undirected versions are W[2]-hard on general graphs, and hence unlikely tobe fixed parameter tractable (FPT). The undirected Steiner Tree problem becomes FPT when restricted to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down on directed planar graphs. In this article we precisely chart the tractability border for Directed Steiner Tree (DST) on sparse graphs parameterized by the number of non-terminals in the solution tree. Specifically, we show that the problem is fixed parameter tractable on graphs exclu
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-642-40449-8
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
671-682
Název nakladatele
Springer Science+Business Media
Místo vydání
Berlin
Místo konání akce
Sophia Antipolis
Datum konání akce
2. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—