The Parameterized Complexity of the Survivable Network Design Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453269" target="_blank" >RIV/00216208:11320/22:10453269 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/1.9781611977066.4" target="_blank" >https://doi.org/10.1137/1.9781611977066.4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611977066.4" target="_blank" >10.1137/1.9781611977066.4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Parameterized Complexity of the Survivable Network Design Problem
Popis výsledku v původním jazyce
For the well-known Survivable Network Design Problem (SNDP) we are given an undirected graph G with edge costs, a set R of terminal vertices, and an integer demand ds,t for every terminal pair s,tELEMENT OFR. The task is to compute a subgraph H of G of minimum cost, such that there are at least ds,t disjoint paths between s and t in H. If the paths are required to be edge-disjoint we obtain the edge-connectivity variant (EC-SNDP), while internally vertex-disjoint paths result in the vertex-connectivity variant (VC-SNDP). Another important case is the element-connectivity variant (LC-SNDP), where the paths are disjoint on edges and non-terminals.In this work we shed light on the parameterized complexity of the above problems. We consider several natural parameters, which include the solution size ℓ, the sum of demands D, the number of terminals k, and the maximum demand dmax. Using simple, elegant arguments, we prove the following results.- We give a complete picture of the parameterized tractability of the three variants w.r.t. parameter ℓ: both EC-SNDP and LC-SNDP are FPT, while VC-SNDP is W[1]-hard.- We identify some special cases of VC-SNDP that are FPT:* when dmax<=3 for parameter ℓ,* on locally bounded treewidth graphs (e.g., planar graphs) for parameter ℓ, and* on graphs of treewidth tw for parameter tw+D.- The well-known Directed Steiner Tree (DST) problem can be seen as single-source EC-SNDP with dmax=1 on directed graphs, and is FPT parameterized by k [Dreyfus & Wagner 1971]. We show that in contrast, the 2-DST problem, where dmax=2, is W[1]-hard, even when parameterized by ℓ.
Název v anglickém jazyce
The Parameterized Complexity of the Survivable Network Design Problem
Popis výsledku anglicky
For the well-known Survivable Network Design Problem (SNDP) we are given an undirected graph G with edge costs, a set R of terminal vertices, and an integer demand ds,t for every terminal pair s,tELEMENT OFR. The task is to compute a subgraph H of G of minimum cost, such that there are at least ds,t disjoint paths between s and t in H. If the paths are required to be edge-disjoint we obtain the edge-connectivity variant (EC-SNDP), while internally vertex-disjoint paths result in the vertex-connectivity variant (VC-SNDP). Another important case is the element-connectivity variant (LC-SNDP), where the paths are disjoint on edges and non-terminals.In this work we shed light on the parameterized complexity of the above problems. We consider several natural parameters, which include the solution size ℓ, the sum of demands D, the number of terminals k, and the maximum demand dmax. Using simple, elegant arguments, we prove the following results.- We give a complete picture of the parameterized tractability of the three variants w.r.t. parameter ℓ: both EC-SNDP and LC-SNDP are FPT, while VC-SNDP is W[1]-hard.- We identify some special cases of VC-SNDP that are FPT:* when dmax<=3 for parameter ℓ,* on locally bounded treewidth graphs (e.g., planar graphs) for parameter ℓ, and* on graphs of treewidth tw for parameter tw+D.- The well-known Directed Steiner Tree (DST) problem can be seen as single-source EC-SNDP with dmax=1 on directed graphs, and is FPT parameterized by k [Dreyfus & Wagner 1971]. We show that in contrast, the 2-DST problem, where dmax=2, is W[1]-hard, even when parameterized by ℓ.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
5th Symposium on Simplicity in Algorithms
ISBN
978-1-61197-706-6
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
37-56
Název nakladatele
Society for Industrial and Applied Mathematics
Místo vydání
Alexandria, US
Místo konání akce
virtual
Datum konání akce
10. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—