Cover time and mixing time of random walks on dynamic graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387271" target="_blank" >RIV/00216208:11320/18:10387271 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/rsa.20752" target="_blank" >https://doi.org/10.1002/rsa.20752</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.20752" target="_blank" >10.1002/rsa.20752</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cover time and mixing time of random walks on dynamic graphs
Popis výsledku v původním jazyce
The application of simple random walks on graphs is a powerful tool that is useful in many algorithmic settings such as network exploration, sampling, information spreading, and distributed computing. This is due to the reliance of a simple random walk on only local data, its negligible memory requirements, and its distributed nature. It is well known that for static graphs the cover time, that is, the expected time to visit every node of the graph, and the mixing time, that is, the time to sample a node according to the stationary distribution, are at most polynomial relative to the size of the graph. Motivated by real world networks, such as peer-to-peer and wireless networks, the conference version of this paper was the first to study random walks on arbitrary dynamic networks. We study the most general model in which an oblivious adversary is permitted to change the graph after every step of the random walk. In contrast to static graphs, and somewhat counter-intuitively, we show that there are adversary strategies that force the expected cover time and the mixing time of the simple random walk on dynamic graphs to be exponentially long, even when at each time step the network is well connected and rapidly mixing. To resolve this, we propose a simple strategy, the lazy random walk, which guarantees, under minor conditions, polynomial cover time and polynomial mixing time regardless of the changes made by the adversary.
Název v anglickém jazyce
Cover time and mixing time of random walks on dynamic graphs
Popis výsledku anglicky
The application of simple random walks on graphs is a powerful tool that is useful in many algorithmic settings such as network exploration, sampling, information spreading, and distributed computing. This is due to the reliance of a simple random walk on only local data, its negligible memory requirements, and its distributed nature. It is well known that for static graphs the cover time, that is, the expected time to visit every node of the graph, and the mixing time, that is, the time to sample a node according to the stationary distribution, are at most polynomial relative to the size of the graph. Motivated by real world networks, such as peer-to-peer and wireless networks, the conference version of this paper was the first to study random walks on arbitrary dynamic networks. We study the most general model in which an oblivious adversary is permitted to change the graph after every step of the random walk. In contrast to static graphs, and somewhat counter-intuitively, we show that there are adversary strategies that force the expected cover time and the mixing time of the simple random walk on dynamic graphs to be exponentially long, even when at each time step the network is well connected and rapidly mixing. To resolve this, we propose a simple strategy, the lazy random walk, which guarantees, under minor conditions, polynomial cover time and polynomial mixing time regardless of the changes made by the adversary.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Random Structures and Algorithms
ISSN
1042-9832
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
576-596
Kód UT WoS článku
000438011100003
EID výsledku v databázi Scopus
2-s2.0-85039167104