Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cover time and mixing time of random walks on dynamic graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387271" target="_blank" >RIV/00216208:11320/18:10387271 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/rsa.20752" target="_blank" >https://doi.org/10.1002/rsa.20752</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20752" target="_blank" >10.1002/rsa.20752</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cover time and mixing time of random walks on dynamic graphs

  • Popis výsledku v původním jazyce

    The application of simple random walks on graphs is a powerful tool that is useful in many algorithmic settings such as network exploration, sampling, information spreading, and distributed computing. This is due to the reliance of a simple random walk on only local data, its negligible memory requirements, and its distributed nature. It is well known that for static graphs the cover time, that is, the expected time to visit every node of the graph, and the mixing time, that is, the time to sample a node according to the stationary distribution, are at most polynomial relative to the size of the graph. Motivated by real world networks, such as peer-to-peer and wireless networks, the conference version of this paper was the first to study random walks on arbitrary dynamic networks. We study the most general model in which an oblivious adversary is permitted to change the graph after every step of the random walk. In contrast to static graphs, and somewhat counter-intuitively, we show that there are adversary strategies that force the expected cover time and the mixing time of the simple random walk on dynamic graphs to be exponentially long, even when at each time step the network is well connected and rapidly mixing. To resolve this, we propose a simple strategy, the lazy random walk, which guarantees, under minor conditions, polynomial cover time and polynomial mixing time regardless of the changes made by the adversary.

  • Název v anglickém jazyce

    Cover time and mixing time of random walks on dynamic graphs

  • Popis výsledku anglicky

    The application of simple random walks on graphs is a powerful tool that is useful in many algorithmic settings such as network exploration, sampling, information spreading, and distributed computing. This is due to the reliance of a simple random walk on only local data, its negligible memory requirements, and its distributed nature. It is well known that for static graphs the cover time, that is, the expected time to visit every node of the graph, and the mixing time, that is, the time to sample a node according to the stationary distribution, are at most polynomial relative to the size of the graph. Motivated by real world networks, such as peer-to-peer and wireless networks, the conference version of this paper was the first to study random walks on arbitrary dynamic networks. We study the most general model in which an oblivious adversary is permitted to change the graph after every step of the random walk. In contrast to static graphs, and somewhat counter-intuitively, we show that there are adversary strategies that force the expected cover time and the mixing time of the simple random walk on dynamic graphs to be exponentially long, even when at each time step the network is well connected and rapidly mixing. To resolve this, we propose a simple strategy, the lazy random walk, which guarantees, under minor conditions, polynomial cover time and polynomial mixing time regardless of the changes made by the adversary.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Svazek periodika

    52

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    576-596

  • Kód UT WoS článku

    000438011100003

  • EID výsledku v databázi Scopus

    2-s2.0-85039167104