Vector MO magnetometry for mapping microwave currents
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387930" target="_blank" >RIV/00216208:11320/18:10387930 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/1.5007434" target="_blank" >https://doi.org/10.1063/1.5007434</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5007434" target="_blank" >10.1063/1.5007434</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vector MO magnetometry for mapping microwave currents
Popis výsledku v původním jazyce
Magneto-optic (MO) effects in magnetic multilayers (MML) can be employed in non-invasive 2D mapping of microwave (mw) radiation on the surface of semiconductor chips. A typical sensor configuration consists of Fe nanolayers sandwiched with dielectrics on a thin Si substrate transparent to mw radiation. To extend the observation bandwidth, Delta f, up to 100 GHz range the sensor works at ferromagnetic resonance (FMR) frequency in applied magnetic flux density, B-appl. The mw currents excite the precession of magnetization, M, in magnetic nanolayers proportional to their amplitude. The MO component reflected on the sensor surface is proportional to the amplitude of M component, M-perpendicular to. The laser source operates at the wavelength of 410 nm. Its plane of incidence is oriented perpendicular to the M-perpendicular to plane. M-perpendicular to oscillates between polar and transverse configurations. A substantial improvement of MO figure of merit takes place in aperiodic MML. More favorable Delta f vs. B-appl dependence and MO response can potentially be achieved in MML imbedding hexagonal ferrite or Co nanolayers with in-plane magnetic anisotropy. (C) 2018 Author(s).
Název v anglickém jazyce
Vector MO magnetometry for mapping microwave currents
Popis výsledku anglicky
Magneto-optic (MO) effects in magnetic multilayers (MML) can be employed in non-invasive 2D mapping of microwave (mw) radiation on the surface of semiconductor chips. A typical sensor configuration consists of Fe nanolayers sandwiched with dielectrics on a thin Si substrate transparent to mw radiation. To extend the observation bandwidth, Delta f, up to 100 GHz range the sensor works at ferromagnetic resonance (FMR) frequency in applied magnetic flux density, B-appl. The mw currents excite the precession of magnetization, M, in magnetic nanolayers proportional to their amplitude. The MO component reflected on the sensor surface is proportional to the amplitude of M component, M-perpendicular to. The laser source operates at the wavelength of 410 nm. Its plane of incidence is oriented perpendicular to the M-perpendicular to plane. M-perpendicular to oscillates between polar and transverse configurations. A substantial improvement of MO figure of merit takes place in aperiodic MML. More favorable Delta f vs. B-appl dependence and MO response can potentially be achieved in MML imbedding hexagonal ferrite or Co nanolayers with in-plane magnetic anisotropy. (C) 2018 Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIP Advances
ISSN
2158-3226
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
—
Kód UT WoS článku
000433954000409
EID výsledku v databázi Scopus
2-s2.0-85041447394