Controlling the Charging of Electric Vehicles with Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10388389" target="_blank" >RIV/00216208:11320/18:10388389 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8489027" target="_blank" >https://ieeexplore.ieee.org/document/8489027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN.2018.8489027" target="_blank" >10.1109/IJCNN.2018.8489027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Controlling the Charging of Electric Vehicles with Neural Networks
Popis výsledku v původním jazyce
We propose and evaluate controllers for the coordination of the charging of electric vehicles. The controllers are based on neural networks and are completely de-centralized, in the sense that the charging current is completely decided by the controller itself. One of the versions of the controllers does not require any outside communication at all. We test controllers based on two different architectures of neural networks-the feed-forward networks and the echo state networks. The networks are optimized by either an evolutionary algorithm (CMA-ES) or by a gradient-based method. The results of the different architectures and the different optimization algorithms are compared in a realistic scenario. We show that the controllers are able to charge the cars while keeping the peak consumptions almost the same as when no charging is performed. Moreover, the controllers fill the valleys of the consumption thus reducing the difference between the maximum and minimum consumption in the grid.
Název v anglickém jazyce
Controlling the Charging of Electric Vehicles with Neural Networks
Popis výsledku anglicky
We propose and evaluate controllers for the coordination of the charging of electric vehicles. The controllers are based on neural networks and are completely de-centralized, in the sense that the charging current is completely decided by the controller itself. One of the versions of the controllers does not require any outside communication at all. We test controllers based on two different architectures of neural networks-the feed-forward networks and the echo state networks. The networks are optimized by either an evolutionary algorithm (CMA-ES) or by a gradient-based method. The results of the different architectures and the different optimization algorithms are compared in a realistic scenario. We show that the controllers are able to charge the cars while keeping the peak consumptions almost the same as when no charging is performed. Moreover, the controllers fill the valleys of the consumption thus reducing the difference between the maximum and minimum consumption in the grid.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-10090Y" target="_blank" >GJ17-10090Y: Optimalizace sítí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 International Joint Conference on Neural Networks (IJCNN)
ISBN
978-1-5090-6014-6
ISSN
2161-4407
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Neuveden
Místo konání akce
Rio de Janeiro, Brazílie
Datum konání akce
8. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—