Existence of stationary weak solutions for compressible heat conducting flows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10388564" target="_blank" >RIV/00216208:11320/18:10388564 - isvavai.cz</a>
Výsledek na webu
<a href="https://rd.springer.com/referenceworkentry/10.1007/978-3-319-13344-7_64" target="_blank" >https://rd.springer.com/referenceworkentry/10.1007/978-3-319-13344-7_64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-13344-7_64" target="_blank" >10.1007/978-3-319-13344-7_64</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Existence of stationary weak solutions for compressible heat conducting flows
Popis výsledku v původním jazyce
The steady compressible Navier-Stokes-Fourier system is considered, with either Dirichlet or Navier boundary conditions for the velocity and the heat flux on the boundary proportional to the difference of the temperature inside and outside. In dependence on several parameters, i.e., the adiabatic constant appearing in the pressure law p.%; #/ % C %# and the growth exponent in the heat conductivity, i.e., .#/ .1 C #m/, and without any restriction on the size of the data, the main ideas of the construction of weak and variational entropy solutions for the three-dimensional flows with temperature-dependent viscosity coefficients are explained. Further, the case when it is possible to prove existence of solutions with bounded density is reviewed. The main changes in the construction of solutions for the two-dimensional flows are mentioned, and finally, results for more complex systems are reviewed, where the steady compressible Navier-Stokes-Fourier equations play an important role.
Název v anglickém jazyce
Existence of stationary weak solutions for compressible heat conducting flows
Popis výsledku anglicky
The steady compressible Navier-Stokes-Fourier system is considered, with either Dirichlet or Navier boundary conditions for the velocity and the heat flux on the boundary proportional to the difference of the temperature inside and outside. In dependence on several parameters, i.e., the adiabatic constant appearing in the pressure law p.%; #/ % C %# and the growth exponent in the heat conductivity, i.e., .#/ .1 C #m/, and without any restriction on the size of the data, the main ideas of the construction of weak and variational entropy solutions for the three-dimensional flows with temperature-dependent viscosity coefficients are explained. Further, the case when it is possible to prove existence of solutions with bounded density is reviewed. The main changes in the construction of solutions for the two-dimensional flows are mentioned, and finally, results for more complex systems are reviewed, where the steady compressible Navier-Stokes-Fourier equations play an important role.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-03230S" target="_blank" >GA16-03230S: Termodynamicky konzistentni modely pro proudění tekutin: matematická teorie a numerické řešení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Handbook of mathematical analysis in mechanics of viscous fluids
ISBN
978-3-319-13343-0
Počet stran výsledku
68
Strana od-do
2595-2662
Počet stran knihy
3045
Název nakladatele
Springer International Publishing
Místo vydání
Neuveden
Kód UT WoS kapitoly
—