Derivation of equations for continuum mechanics and thermodynamics of fluids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389591" target="_blank" >RIV/00216208:11320/18:10389591 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/referencework/10.1007/978-3-319-13344-7" target="_blank" >https://link.springer.com/referencework/10.1007/978-3-319-13344-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-13344-7_1" target="_blank" >10.1007/978-3-319-13344-7_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Derivation of equations for continuum mechanics and thermodynamics of fluids
Popis výsledku v původním jazyce
The chapter starts with overview of the derivation of the balance equations for mass, momentum, angular momentum, and total energy, which is followed by a detailed discussion of the concept of entropy and entropy production. While the balance laws are universal for any continuous medium, the particular behavior of the material of interest must be described by an extra set of material-specific equations. These equations relating, for example, the Cauchy stress tensor and the kinematical quantities are called the constitutive relations. The core part of the chapter is devoted to the presentation of a modern thermodynamically based phenomenological theory of constitutive relations. The key feature of the theory is that the constitutive relations stem from the choice of two scalar quantities, the internal energy and the entropy production. This is tantamount to the proposition that the material behavior is fully characterized by the way it stores the energy and produces the entropy. The general theory is documented by several examples of increasing complexity. It is shown how to derive the constitutive relations for compressible and incompressible viscous heat-conducting fluids (Navier-Stokes-Fourier fluid), Korteweg fluids, and compressible and incompressible heat-conducting viscoelastic fluids (Oldroyd-B and Maxwell fluid).
Název v anglickém jazyce
Derivation of equations for continuum mechanics and thermodynamics of fluids
Popis výsledku anglicky
The chapter starts with overview of the derivation of the balance equations for mass, momentum, angular momentum, and total energy, which is followed by a detailed discussion of the concept of entropy and entropy production. While the balance laws are universal for any continuous medium, the particular behavior of the material of interest must be described by an extra set of material-specific equations. These equations relating, for example, the Cauchy stress tensor and the kinematical quantities are called the constitutive relations. The core part of the chapter is devoted to the presentation of a modern thermodynamically based phenomenological theory of constitutive relations. The key feature of the theory is that the constitutive relations stem from the choice of two scalar quantities, the internal energy and the entropy production. This is tantamount to the proposition that the material behavior is fully characterized by the way it stores the energy and produces the entropy. The general theory is documented by several examples of increasing complexity. It is shown how to derive the constitutive relations for compressible and incompressible viscous heat-conducting fluids (Navier-Stokes-Fourier fluid), Korteweg fluids, and compressible and incompressible heat-conducting viscoelastic fluids (Oldroyd-B and Maxwell fluid).
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
ISBN
978-3-319-13344-7
Počet stran výsledku
70
Strana od-do
3-72
Počet stran knihy
3030
Název nakladatele
Springer
Místo vydání
Neuveden
Kód UT WoS kapitoly
—