A thermodynamic framework for heat-conducting flows of mixtures of two interacting fluids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455438" target="_blank" >RIV/00216208:11320/22:10455438 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Lpz-DZH0hT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Lpz-DZH0hT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.202100389" target="_blank" >10.1002/zamm.202100389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A thermodynamic framework for heat-conducting flows of mixtures of two interacting fluids
Popis výsledku v původním jazyce
Within the theory of interacting continua, we develop a model for a heat conducting mixture of two interacting fluids described in terms of the densities and the velocities for each fluid and the temperature field for the mixture as a whole. We use a general thermodynamic framework that determines the response of the material from the knowledge of two pieces of information, namely how the material stores the energy and how the entropy is produced. This information is expressed in the form of the constitutive equations for two scalars: the Helmholtz free energy and the entropy production. Additionally, we follow the goal to determine the response of a mixture from a small (minimal) set of material parameters, including shear viscosity, bulk viscosity and heat conductivity associated with the mixture as a whole and the drag coefficient connected with the interaction force between the constituents. The same thermodynamic approach is used to obtain the model when the mixture as a whole responses as an incompressible material. For both the compressible and incompressible mixtures, we investigate three variants stemming from different definitions of the (averaged) velocity associated with the mixture as a whole. We also address the issue of identification of boundary conditions for the individual constituents from the standard boundary conditions formulated in terms of the quantities associated with the mixture as a whole.
Název v anglickém jazyce
A thermodynamic framework for heat-conducting flows of mixtures of two interacting fluids
Popis výsledku anglicky
Within the theory of interacting continua, we develop a model for a heat conducting mixture of two interacting fluids described in terms of the densities and the velocities for each fluid and the temperature field for the mixture as a whole. We use a general thermodynamic framework that determines the response of the material from the knowledge of two pieces of information, namely how the material stores the energy and how the entropy is produced. This information is expressed in the form of the constitutive equations for two scalars: the Helmholtz free energy and the entropy production. Additionally, we follow the goal to determine the response of a mixture from a small (minimal) set of material parameters, including shear viscosity, bulk viscosity and heat conductivity associated with the mixture as a whole and the drag coefficient connected with the interaction force between the constituents. The same thermodynamic approach is used to obtain the model when the mixture as a whole responses as an incompressible material. For both the compressible and incompressible mixtures, we investigate three variants stemming from different definitions of the (averaged) velocity associated with the mixture as a whole. We also address the issue of identification of boundary conditions for the individual constituents from the standard boundary conditions formulated in terms of the quantities associated with the mixture as a whole.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM Zeitschrift für Angewandte Mathematik und Mechanik [online]
ISSN
1521-4001
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
e202100389
Kód UT WoS článku
000843661300001
EID výsledku v databázi Scopus
2-s2.0-85136794794