ON INCOMPRESSIBLE HEAT-CONDUCTING VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS-DIFFUSION AND PURELY SPHERICAL ELASTIC RESPONSE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435824" target="_blank" >RIV/00216208:11320/21:10435824 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jVUIRN1fz4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jVUIRN1fz4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1384452" target="_blank" >10.1137/20M1384452</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON INCOMPRESSIBLE HEAT-CONDUCTING VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS-DIFFUSION AND PURELY SPHERICAL ELASTIC RESPONSE
Popis výsledku v původním jazyce
We prove the existence of large-data global-in-time weak solutions to an evolutionary PDE system describing flows of incompressible heat-conducting viscoelastic rate-type fluids with stress-diffusion, subject to a stick-slip boundary condition for the velocity and a homogeneous Neumann boundary condition for the extra stress tensor. In the introductory section we develop the thermodynamic foundations of the proposed model, and we document the role of thermodynamics in obtaining critical structural relations between the quantities of interest. These structural relations are then exploited in the mathematical analysis of the governing equations. In particular, the definition of weak solution is motivated by the thermodynamic basis of the model. The extra stress tensor describing the elastic response of the fluid is in our case purely spherical, which is a simplification from the physical point of view. The model nevertheless exhibits features that require novel mathematical ideas in order to deal with the technically complex structure of the associated internal energy and the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of large-data global-in-time weak solutions to the governing equations for coupled thermo-mechanical processes in viscoelastic rate-type fluids.
Název v anglickém jazyce
ON INCOMPRESSIBLE HEAT-CONDUCTING VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS-DIFFUSION AND PURELY SPHERICAL ELASTIC RESPONSE
Popis výsledku anglicky
We prove the existence of large-data global-in-time weak solutions to an evolutionary PDE system describing flows of incompressible heat-conducting viscoelastic rate-type fluids with stress-diffusion, subject to a stick-slip boundary condition for the velocity and a homogeneous Neumann boundary condition for the extra stress tensor. In the introductory section we develop the thermodynamic foundations of the proposed model, and we document the role of thermodynamics in obtaining critical structural relations between the quantities of interest. These structural relations are then exploited in the mathematical analysis of the governing equations. In particular, the definition of weak solution is motivated by the thermodynamic basis of the model. The extra stress tensor describing the elastic response of the fluid is in our case purely spherical, which is a simplification from the physical point of view. The model nevertheless exhibits features that require novel mathematical ideas in order to deal with the technically complex structure of the associated internal energy and the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of large-data global-in-time weak solutions to the governing equations for coupled thermo-mechanical processes in viscoelastic rate-type fluids.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
46
Strana od-do
3985-4030
Kód UT WoS článku
000692288300010
EID výsledku v databázi Scopus
2-s2.0-85112670847