Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ON INCOMPRESSIBLE HEAT-CONDUCTING VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS-DIFFUSION AND PURELY SPHERICAL ELASTIC RESPONSE

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435824" target="_blank" >RIV/00216208:11320/21:10435824 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jVUIRN1fz4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jVUIRN1fz4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1384452" target="_blank" >10.1137/20M1384452</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ON INCOMPRESSIBLE HEAT-CONDUCTING VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS-DIFFUSION AND PURELY SPHERICAL ELASTIC RESPONSE

  • Popis výsledku v původním jazyce

    We prove the existence of large-data global-in-time weak solutions to an evolutionary PDE system describing flows of incompressible heat-conducting viscoelastic rate-type fluids with stress-diffusion, subject to a stick-slip boundary condition for the velocity and a homogeneous Neumann boundary condition for the extra stress tensor. In the introductory section we develop the thermodynamic foundations of the proposed model, and we document the role of thermodynamics in obtaining critical structural relations between the quantities of interest. These structural relations are then exploited in the mathematical analysis of the governing equations. In particular, the definition of weak solution is motivated by the thermodynamic basis of the model. The extra stress tensor describing the elastic response of the fluid is in our case purely spherical, which is a simplification from the physical point of view. The model nevertheless exhibits features that require novel mathematical ideas in order to deal with the technically complex structure of the associated internal energy and the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of large-data global-in-time weak solutions to the governing equations for coupled thermo-mechanical processes in viscoelastic rate-type fluids.

  • Název v anglickém jazyce

    ON INCOMPRESSIBLE HEAT-CONDUCTING VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS-DIFFUSION AND PURELY SPHERICAL ELASTIC RESPONSE

  • Popis výsledku anglicky

    We prove the existence of large-data global-in-time weak solutions to an evolutionary PDE system describing flows of incompressible heat-conducting viscoelastic rate-type fluids with stress-diffusion, subject to a stick-slip boundary condition for the velocity and a homogeneous Neumann boundary condition for the extra stress tensor. In the introductory section we develop the thermodynamic foundations of the proposed model, and we document the role of thermodynamics in obtaining critical structural relations between the quantities of interest. These structural relations are then exploited in the mathematical analysis of the governing equations. In particular, the definition of weak solution is motivated by the thermodynamic basis of the model. The extra stress tensor describing the elastic response of the fluid is in our case purely spherical, which is a simplification from the physical point of view. The model nevertheless exhibits features that require novel mathematical ideas in order to deal with the technically complex structure of the associated internal energy and the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of large-data global-in-time weak solutions to the governing equations for coupled thermo-mechanical processes in viscoelastic rate-type fluids.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

  • Svazek periodika

    53

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    46

  • Strana od-do

    3985-4030

  • Kód UT WoS článku

    000692288300010

  • EID výsledku v databázi Scopus

    2-s2.0-85112670847