EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY DATA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452925" target="_blank" >RIV/00216208:11320/22:10452925 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=oOijdcdmC8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=oOijdcdmC8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1455322" target="_blank" >10.1137/21M1455322</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY DATA
Popis výsledku v původním jazyce
We consider a system of evolutionary equations that is capable of describing certain viscoelastic effects in linearized yet nonlinear models of solid mechanics. The constitutive relation, involving the Cauchy stress, the small strain tensor, and the symmetric velocity gradient, is given in an implicit form. For a large class of these implicit constitutive relations, we establish the existence and uniqueness of a global-in-time large-data weak solution. Then we focus on the class of so-called limiting strain models, i.e., models for which the magnitude of the strain tensor is known to remain small a priori, regardless of the magnitude of the Cauchy stress tensor. For this class of models, a new technical difficulty arises. The Cauchy stress is only an integrable function over its domain of definition, resulting in the underlying function spaces being nonreflexive and thus the weak compactness of bounded sequences of elements of these spaces is lost. Nevertheless, even for problems of this type we are able to provide a satisfactory existence theory, as long as the initial data have finite elastic energy and the boundary data fulfill natural compatibility conditions.
Název v anglickém jazyce
EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY DATA
Popis výsledku anglicky
We consider a system of evolutionary equations that is capable of describing certain viscoelastic effects in linearized yet nonlinear models of solid mechanics. The constitutive relation, involving the Cauchy stress, the small strain tensor, and the symmetric velocity gradient, is given in an implicit form. For a large class of these implicit constitutive relations, we establish the existence and uniqueness of a global-in-time large-data weak solution. Then we focus on the class of so-called limiting strain models, i.e., models for which the magnitude of the strain tensor is known to remain small a priori, regardless of the magnitude of the Cauchy stress tensor. For this class of models, a new technical difficulty arises. The Cauchy stress is only an integrable function over its domain of definition, resulting in the underlying function spaces being nonreflexive and thus the weak compactness of bounded sequences of elements of these spaces is lost. Nevertheless, even for problems of this type we are able to provide a satisfactory existence theory, as long as the initial data have finite elastic energy and the boundary data fulfill natural compatibility conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Svazek periodika
54
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
6186-6222
Kód UT WoS článku
000963562000014
EID výsledku v databázi Scopus
2-s2.0-85139892137