Determining representativeness of training plans: A case of macro-operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389701" target="_blank" >RIV/00216208:11320/18:10389701 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/18:00329346
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICTAI.2018.00081" target="_blank" >http://dx.doi.org/10.1109/ICTAI.2018.00081</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI.2018.00081" target="_blank" >10.1109/ICTAI.2018.00081</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determining representativeness of training plans: A case of macro-operators
Popis výsledku v původním jazyce
Most learning for planning approaches rely on analysis of training plans. This is especially the case for one of the best-known learning approach: the generation of macro-operators (macros). These plans, usually generated from a very limited set of training tasks, must provide a ground to extract useful knowledge that can be fruitfully exploited by planning engines. In that, training tasks have to be representative of the larger class of planning tasks on which planning engines will then be run. A pivotal question is how such a set of training tasks can be selected. To address this question, here we introduce a notion of structural similarity of plans. We conjecture that if a class of planning tasks presents structurally similar plans, then a small subset of these tasks is representative enough to learn the same knowledge (macros) as could be learnt from a larger set of tasks of the same class. We have tested our conjecture by focusing on two state-of-the-art macro generation approaches. Our large empirical analysis considering seven state-of-the-art planners, and fourteen benchmark domains from the International Planning Competition, generally confirms our conjecture which can be exploited for selecting small-yet-informative training sets of tasks.
Název v anglickém jazyce
Determining representativeness of training plans: A case of macro-operators
Popis výsledku anglicky
Most learning for planning approaches rely on analysis of training plans. This is especially the case for one of the best-known learning approach: the generation of macro-operators (macros). These plans, usually generated from a very limited set of training tasks, must provide a ground to extract useful knowledge that can be fruitfully exploited by planning engines. In that, training tasks have to be representative of the larger class of planning tasks on which planning engines will then be run. A pivotal question is how such a set of training tasks can be selected. To address this question, here we introduce a notion of structural similarity of plans. We conjecture that if a class of planning tasks presents structurally similar plans, then a small subset of these tasks is representative enough to learn the same knowledge (macros) as could be learnt from a larger set of tasks of the same class. We have tested our conjecture by focusing on two state-of-the-art macro generation approaches. Our large empirical analysis considering seven state-of-the-art planners, and fourteen benchmark domains from the International Planning Competition, generally confirms our conjecture which can be exploited for selecting small-yet-informative training sets of tasks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07252S" target="_blank" >GA18-07252S: MoRePlan: Modelování a reformulace plánovacích problémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Tools with Artificial Intelligence, ICTAI 2018
ISBN
978-1-5386-7449-9
ISSN
1082-3409
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
488-492
Název nakladatele
IEEE
Místo vydání
NEW YORK, NY 10017 USA
Místo konání akce
Volos, Greece
Datum konání akce
5. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000457750200071