MEvo: A Framework for Effective Macro Sets Evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00334341" target="_blank" >RIV/68407700:21230/20:00334341 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1080/0952813X.2019.1672796" target="_blank" >https://doi.org/10.1080/0952813X.2019.1672796</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/0952813X.2019.1672796" target="_blank" >10.1080/0952813X.2019.1672796</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MEvo: A Framework for Effective Macro Sets Evolution
Popis výsledku v původním jazyce
In Automated Planning, generating macro-operators (macros) is a well-known reformulation approach that is used to speed-up the planning process. Nowadays, given the number of existing techniques, a large number of macros is already available or can be easily extracted. Most of the macro generation techniques aim for using the same set of generated macros for each planner and every problem instance in a given domain. Although they provide `general improvement’, the effect of macros might vary a lot for different planners. Moreover, the impact of macros on structurally different problem instances than the training ones can be potentially very detrimental. Evidently, this limits the exploitation of macros in real-world planning applications, where the structure of problem instances can often change as well as the exploited planning engine can change from time to time. In this paper, we propose the Macro sets Evolution (MEvo) approach. MEvo has been designed for overcoming the aforementioned issues in order to improve the performance of domain-independent planners by dynamically selecting promising macros – taken from a given pool – while solving continuous streams of problem instances. Our extensive empirical study, involving more than 1,000 planning problem instances and 8 state-of-the-art planning engines, demonstrates effectiveness and efficiency of MEvo.
Název v anglickém jazyce
MEvo: A Framework for Effective Macro Sets Evolution
Popis výsledku anglicky
In Automated Planning, generating macro-operators (macros) is a well-known reformulation approach that is used to speed-up the planning process. Nowadays, given the number of existing techniques, a large number of macros is already available or can be easily extracted. Most of the macro generation techniques aim for using the same set of generated macros for each planner and every problem instance in a given domain. Although they provide `general improvement’, the effect of macros might vary a lot for different planners. Moreover, the impact of macros on structurally different problem instances than the training ones can be potentially very detrimental. Evidently, this limits the exploitation of macros in real-world planning applications, where the structure of problem instances can often change as well as the exploited planning engine can change from time to time. In this paper, we propose the Macro sets Evolution (MEvo) approach. MEvo has been designed for overcoming the aforementioned issues in order to improve the performance of domain-independent planners by dynamically selecting promising macros – taken from a given pool – while solving continuous streams of problem instances. Our extensive empirical study, involving more than 1,000 planning problem instances and 8 state-of-the-art planning engines, demonstrates effectiveness and efficiency of MEvo.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Experimental and Theoretical Artificial Intelligence
ISSN
0952-813X
e-ISSN
1362-3079
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
685-703
Kód UT WoS článku
000557475300001
EID výsledku v databázi Scopus
2-s2.0-85073948172