Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Adversarial Examples in Natural Language Processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390133" target="_blank" >RIV/00216208:11320/18:10390133 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.lrec-conf.org/proceedings/lrec2018/summaries/852.html" target="_blank" >http://www.lrec-conf.org/proceedings/lrec2018/summaries/852.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Adversarial Examples in Natural Language Processing

  • Popis výsledku v původním jazyce

    Machine learning models have been providing promising results in many fields including natural language processing. These models are, nevertheless, prone to adversarial examples. These are artificially constructed examples which evince two main features: they resemble the real training data but they deceive already trained model. This paper investigates the effect of using adversarial examples during the training of recurrent neural networks whose text input is in the form of a sequence of word/character embeddings. The effects are studied on a compilation of eight NLP datasets whose interface was unified for quick experimenting. Based on the experiments and the dataset characteristics, we conclude that using the adversarial examples for NLP tasks that are modeled by recurrent neural networks provides a regularization effect and enables the training of models with greater number of parameters without overfitting. In addition, we discuss which combinations of datasets and model settings might benefit f

  • Název v anglickém jazyce

    Using Adversarial Examples in Natural Language Processing

  • Popis výsledku anglicky

    Machine learning models have been providing promising results in many fields including natural language processing. These models are, nevertheless, prone to adversarial examples. These are artificially constructed examples which evince two main features: they resemble the real training data but they deceive already trained model. This paper investigates the effect of using adversarial examples during the training of recurrent neural networks whose text input is in the form of a sequence of word/character embeddings. The effects are studied on a compilation of eight NLP datasets whose interface was unified for quick experimenting. Based on the experiments and the dataset characteristics, we conclude that using the adversarial examples for NLP tasks that are modeled by recurrent neural networks provides a regularization effect and enables the training of models with greater number of parameters without overfitting. In addition, we discuss which combinations of datasets and model settings might benefit f

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018)

  • ISBN

    979-10-95546-00-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    3693-3700

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

    Paris, France

  • Místo konání akce

    Miyazaki, Japan

  • Datum konání akce

    7. 5. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku