A natural language processing approach to Malware classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370940" target="_blank" >RIV/68407700:21240/23:00370940 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11416-023-00506-w" target="_blank" >https://doi.org/10.1007/s11416-023-00506-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11416-023-00506-w" target="_blank" >10.1007/s11416-023-00506-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A natural language processing approach to Malware classification
Popis výsledku v původním jazyce
Many different machine learning and deep learning techniques have been successfully employed for malware detection and classification. Examples of popular learning techniques in the malware domain include Hidden Markov Models (HMM), Random Forests (RF), Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) networks. In this research, we consider a hybrid architecture, where HMMs are trained on opcode sequences, and the resulting hidden states of these trained HMMs are used as feature vectors in various classifiers. In this context, extracting the HMM hidden state sequences can be viewed as a form of feature engineering that is somewhat analogous to techniques that are commonly employed in Natural Language Processing (NLP). We find that this NLP-based approach outperforms other popular techniques on a challenging malware dataset, with an HMM-Random Forest model yielding the best results.
Název v anglickém jazyce
A natural language processing approach to Malware classification
Popis výsledku anglicky
Many different machine learning and deep learning techniques have been successfully employed for malware detection and classification. Examples of popular learning techniques in the malware domain include Hidden Markov Models (HMM), Random Forests (RF), Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) networks. In this research, we consider a hybrid architecture, where HMMs are trained on opcode sequences, and the resulting hidden states of these trained HMMs are used as feature vectors in various classifiers. In this context, extracting the HMM hidden state sequences can be viewed as a form of feature engineering that is somewhat analogous to techniques that are commonly employed in Natural Language Processing (NLP). We find that this NLP-based approach outperforms other popular techniques on a challenging malware dataset, with an HMM-Random Forest model yielding the best results.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computer Virology and Hacking Techniques
ISSN
2263-8733
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85174626188